Enabling Peer-to-Peer Interactions for Scientific
Applications on the Grid*

Vincent Matossian and Manish Parashar

The Applied Software Systems Laboratory
Department of Electrical and Computer Engineering
Rutgers University, Piscataway NJ 08855, USA
{vincentm,parashar}@caip.rutgers.edu

Abstract. P2P and Grid communities are actively working on deploy-
ing and standardizing infrastructure, protocols, and mechanisms, to sup-
port decentralized interactions across distributed resources. Such an in-
frastructure will enable new classes of applications based on continuous,
seamless and secure interactions, where the application components, Grid
services, resources and data interact as peers. This paper presents the de-
sign, implementation and evaluation of a peer-to-peer messaging frame-
work that builds on the JXTA protocols to support the interaction and
associated messaging semantics required by these applications.

1 Introduction

The emergence of Grid applications coincides with that of Peer-to-Peer (P2P)
applications such as Napster or SETTQHOME[1]. This parallel is manifested in
the similarities in infrastructural requirements of Grid and P2P systems, such
as the underlying decentralized (overlay) network architecture, the dynamic dis-
covery of resources, the aggregation of distributed resources, or the need for
system integrity and security guarantees. A key requirement for enabling the
application-level interactions on the Grid is a P2P messaging layer that sup-
ports the interactions and their associated messaging semantics. The overall
objective of this work is to prototype such a messaging framework to support
Grid applications in a P2P environment. A number of messaging solutions for
P2P/Grid systems have been proposed in recent years. These include Message
Oriented Middleware (MOM) systems such as JMS [2], LeSubscribe [3], and IBM
MQSeries[4], as well as Grid oriented systems such as GridRPC [5], NaradaBro-
kering [6], and ICENI[7]. In this paper we present Pawn, a publisher/subscriber
messaging substrate that offers interaction services for distributed object man-
agement, monitoring and steering, group formation, and collaboration through
guaranteed, flexible, and stateful messaging.

* Support for this work was provided by the NSF via grants numbers ACI 9984357
(CAREERS), EIA 0103674 (NGS) and EIA-0120934 (ITR), DOE ASCI/ASAP (Cal-
tech) via grant numbers PC295251 and 1052856.



Pawn combines properties from messaging and P2P messaging on the Grid
to provide publisher/subscriber functionalities as well as advanced messaging
semantics such as guaranteed message delivery, push, pull, transactions, and re-
quest/response interaction modalities, support for synchronous and asynchronous
communications, coordination through message ordering, and remote procedure
calls. Unlike other publisher/subscriber systems, Pawn focuses on interaction
services to support application monitoring and steering, collaboration, and ap-
plication execution on the Grid. This paper makes three contributions: (1) the
definition of messaging requirements for scientific investigation in a P2P Grid
environment, (2) the identification and implementation of corresponding services
and mechanisms in Pawn, (3) the deployment of the Pawn messaging substrate
and its evaluation using a “real-world” Grid application.

The rest of this paper is organized as follows. Section 2 presents the moti-
vating application process and describes the underlying interactions. Section 3
presents the design and implementation of Pawn. Section 4 describes the use of
Pawn to enable the interactions require in the motivating application described
in section 2. Section 5 presents an experimental evaluation of Pawn.Section 6
concludes the paper.

2 DMotivating Application: Enabling Autonomic Qil
Reservoir Optimization

The research presented in this
paper and the Pawn messaging sub-
strate is motivated by the autonomic
oil reservoir optimization process on
the Grid. The goal of the process is
to dynamically optimize the place-
ment and configuration of oil wells
to maximize revenue. The overall ap-
plication scenario is illustrated in Fig-
ure 1. The peer components involved
include: (1) Integrated Parallel
Accurate Reservoir Simulator
(IPARS)|[8] providing sophisticated
Fig.1. Autonomous optimization in simulation components that encap-
IPARS using VFSA sulate complex mathematical mod-

els of the physical interaction in the
subsurface. (2) IPARS Factory responsible for configuring IPARS simulations,
executing them on resources on the Grid and managing their execution. (3)
Very Fast Simulated Annealing (VFSA) an optimization service based on
statistical physics (4) Economic Modeling Service that uses IPARS simula-
tion outputs and current market parameters (oil prices, costs, etc.) to compute
estimated revenues for a particular reservoir configuration. (5) DISCOVER
Middleware that integrates Globus [9] Grid services (GSI, MDS, GRAM, and




GASS), via the CorbaCoG [10], and DISCOVER remote monitoring, interactive
steering, and collaboration services, (6) DISCOVER Collaborative Por-
tals providing experts (scientists, engineers) with collaborative access to other
peers component. These entities need to dynamically discover and interact with
one another as peers to achieve the overall application objectives. The experts
use the portals to interact with the DISCOVER middleware and the Globus
Grid services to discover and allocate appropriate resource, and to deploy the
IPARS Factory, VFSA and Economic model peers ((1)). The IPARS Factory
discovers and interacts with the VFSA service peer to configure and initialize it
((2)). The expert interacts with the IPARS Factory and VFSA to define appli-
cation configuration parameters ((3)). The IPARS Factory then interacts with
the DISCOVER middleware to discover and allocate resources and to configure
and execute IPARS simulations ((4)). The IPARS simulation now interacts with
the Economic model to determine current revenues, and discovers and interacts
with the VFSA service when it needs optimization ((5)). VFSA provides IPARS
Factory with optimized well information ((6)), which then launches new TPARS
simulations ((7)). Experts at anytime can discover and collaboratively moni-
tor and interactively steer IPARS simulations, configure the other services and
drive the scientific discovery process ((8)). Once the optimal well parameters
are determined, the IPARS Factory configures and deploys a production IPARS
run.

3 Design and Implementation of Pawn

A conceptual overview of the Pawn - \]
: : : Intaractions
fram'ework 15 presented m Flgure 2 Synchroncus/Asynchronous; Dynamic Data
and is composed of peers (comput- Injection; Remate Procedure Calls
ing, storage, or user peers), network Services
and interaction services, and mech- Application Execution; Application Runtime

Caontral; Application Manitaring and

anisms. These components are lay- Steering: Collaboration

ered to represent the requirements
stack enabling interactions in a Grid

Messages
Platforme-indapandant; Coordination:

environment. The figure can be read Guarantees
from bottom to top as : “Peers com- Pos
. rs
pose messages handled by services \ Client; Rendezvous; Applicalion _/,

through specific interaction modali-
ties”. In Pawn, peers can implement
one or more services (behaviors); the
combination of services implemented by a peer defines its role. Typical roles for
a peer are client, application or rendezvous.

Fig. 2. Pawn requirements stack.

A client peer deploys applications on resources and accesses them for inter-
active monitoring and/or steering. It also collaborates with other peers in the
peergroup.An application peer exports its application interfaces and controls to
the peergroup. These interfaces are used by other peers to interact with the ap-
plication. The rendezvous peer distributes and relays messages, and filters them
en route to their destination.



Pawn builds on Project JXTA[11], a general-purpose-peer-to-peer framework.
JXTA concepts include peer, peergroup, advertisement , module , pipe , ren-
dezvous , and security that is provided by the routing and transport layers at
every endpoint. JXTA defines protocols for : (1) discovering peers (Peer Dis-
covery Protocol, PDP), (2) binding virtual end-to-end communication channels
between peers (Pipe Binding Protocol, PBP), (3) resolving queries (Peer Re-
solver Protocol, PRP), (4) obtaining information on a particular peer, such as
its available memory or CPU load (Peer Information Protocol, PIP) (5) prop-
agating messages in a peergroup (Rendezvous protocol, RVP), (6) determining
and routing from a source to a destination using available transmission protocols
(Endpoint Routing Protocol, ERP). Protocols in JXTA define the format of the
messages exchanged as well as the behavior adopted on receiving a message.
3.1 Pawn Services

A network service is a functionality that can be implemented by a peer and
made available to a peergroup. File-sharing or printing are typical examples
of network services. In Pawn, network services are application-centric and pro-
vide the mechanisms to query, respond, subscribe, or publish information to a
peergroup. Pawn offers four key services to enable dynamic collaborations and
autonomic interactions in scientific computing environments. These services are:
Application Runtime Control, Application Monitoring and Steering, Application
Ezecution, and Group Communication.

Application Execution service [AEX]: The Application Execution service
enables a peer to remotely start, stop, get the status of, or restart an application.
This service requires a mechanism to make synchronous and guaranteed remote
calls for resource allocation and application deployment (transaction oriented
interaction).

Application Monitoring and Steering service [AMS]: The Application
Monitoring and Steering service handles interactive(i.e. Request/Response) ap-
plication querying (i.e. PULL) and dynamic setting (i.e. PUSH) of application
parameters. It requires support for synchronous and asynchronous communica-
tions and guaranteed message delivery and dynamic data injection (e.g. to push
information to an application at runtime).

Application Runtime Control service [ARC]: The application runtime con-
trol service announces the existence of an application to the peergroup, sends
application responses, publishes application update messages, and notifies the
peergroup of an application termination. This service requires a mechanism
to push information to the peergroup and respond to queries (PUSH and Re-
quest/Response interaction).

Collaboration Service [Group communication, Presence]: The collab-
oration service defines collaborative tools, group communication and presence.
Collaborating peers need to establish direct end-to-end communications through
synchronous/asynchronous channels (e.g. for file transfer or text communica-
tion), and be able to publish information to the peergroup (Transcation and
PULL interactions).



3.2 Implementation of Pawn Services

Pawn builds on the current Java implementation of the JXTA protocols. JXTA
defines unicast pipes that provide a communication channel between two end-
points, and propagate pipes that can propagate a message to a peergroup. It also
define the Resolver Service that sends and receives messages in an asynchronous
manner. Recipients of the message can be a specific peer or an entire peergroup.
The pipe and resolver service use the available underlying transport protocol
(TCP, HTTP, TLS). To realize the four services identified above, Pawn extends
the pipe and resolver services to provide stateful and guaranteed messaging. This
messaging is then used to enable the key application-level interactions such as
synchronous/asynchronous communication, dynamic data injection, and remote
procedure calls.

Stateful Messages: In Pawn, every message contains a source and destination
identifier, a message type, a message identifier, a payload, and a handler tag. The
handler tag uniquely identifies the service that will process the message. State is
maintained through the payload that contains system/application parameters.
These messages are defined in XML to provide platform-independence.
Message guarantees: Pawn implements application-level communication guar-
antees by combining stateful messages and a per-message acknowledgment ta-
ble maintained at every peer. Guarantees are provided by using message queues
(FIFO) to handle incoming and outgoing messages. Every outgoing message that
expects a response is flagged in the table as awaiting acknowledgment, this flag is
removed once the message is acknowledged. Messages contain a default timeout
value representing an upper limit on the estimated response time. If an acknowl-
edgement is not received and/or the timeout value expires, the message is resent,
blocking or not blocking the current process depending on the communication
type (synchronous or asynchronous). The message identifier is a composition of
the destination and sender’s unique peer identifiers; it is incremented for ev-
ery transaction during a session (interval between a peer joining and leaving a
peergroup) to provide the application-level message ordering guarantees.
Synchronous/Asynchronous communication: Communication in JXTA can
be synchronous when using blocking pipes, or asynchronous when using non-
blocking pipes or the resolver service. In order to provide reliable messaging,
Pawn combines these communication modalities with stateful messaging and
guarantee mechanism.

Dynamic Data Injection: In Pawn, every peer advertisement contains a pipe
advertisement, which uniquely identifies a communication channel to it. This
pipe is used by other peers to create an end-to-end channel to send and receive
messages dynamically (see figure??). Every interacting peer implements a mes-
sage handler that listens for incoming messages on the peer’s input pipe channel;
the message payload contains application-sensitive data that can be dynamically
passed to the application/service identified by the handler tag field.

Remote Method Calls (PawnRPC): The PawnRPC mechanism provides
the low-level constructs for building applications interactions across distributed
peers. Using PawnRPC, a peer can invoke a method on a remote peer dynami-



cally by passing its request as an XML message through a pipe. The interfaces
of the methods that can be remotely invoked are published as part of the peer
advertisement during peer discovery. The XML message is a composition of the
destination address, the remote method name, the arguments of the method, and
the arguments associated types. Upon receiving an RPC message, a peer locally
checks the credentials of the sender, and if the sender is authorized, the peer
invokes the appropriate method and returns a response to the requesting peer.
The process may be done in a synchronous or asynchronous manner. PawnRPC
uses the messaging guarantees to assure delivery ordering, and stateful messages
to tolerate failure.

4 Enabling autonomic reservoir optimization using Pawn

In this section we describe how the interaction services provided by Pawn are
used to support the autonomic oil reservoir process outlined in Figure 1 (Section
2). Every interacting component described in Section 2 is a peer that implements
Pawn services. The IPARS Factory, VFSA, and the DISCOVER middleware are
Application peers and implement ARC and AEX services. The DISCOVER por-
tals are Client peers and implement AMS and Group communication services.
Peer Deployment: The Application Execution service in Pawn uses the Cor-
baCoG kit (and the Globus Grid services it provides) in conjunction with the
DISCOVER middleware to provide client peers access to Grid resources and ser-
vices, and to deploy application peers. Autonomic Optimization: Autonomic
optimization involves interactions between the IPARS simulation, VFSA service
and the IPARS Factory. VFSA provides the IPARS Factory with an initial guess
based on the initialization parameters entered by the client. The IPARS factory
then configures and spawns an IPARS instance. The simulation output is used
by the Economic Model to generate the estimated revenue. This revenue is nor-
malized and then fed back to VFSA, which generates a subsequent guess. The
process continues until the terminating condition is reached (e.g. revenue sta-
bilizes). These interactions build on the Application Runtime Control service
(ARC) and the PawnRPC mechanism.

Collaboration and Interactive Monitoring and Steering: Users can collabora-
tively connect to, monitor, and interactively steer the IPARS Factory, VFSA,
Economic model and an IPARS simulation instance using the Collaboration
Services to communicate with other users, and the Application Monitoring and
Steering service (AMS) to interact with the Application Runtime Control service
(ARC) implemented by the application peer. An interaction between AMS and
ARC is presented on Figure??.

5 Experimental evaluation of Pawn

Pawn was deployed on 20 hosts (Pentium IV processors at 1.5 GHz with 512
MB of RAM, running Linux RedHat 7.2) located at Rutgers University. The
Wide Area measurements were performed using two PCs (a 750 MHz Pentium



ITI with 256 MB RAM and a 350 MHz Pentium IT with 256 MB RAM) deployed
on a private ISP. The evaluation consisted of the following experiments:

O2Peers @S5Pes= W10 Pes=z W20 Peers O JETA rendez vous W FAWN rendezvous
8000 = 1k
-
=
5000 E 1
2
= 4000 PR nl sl al wlwlnln
g
2 3000 g 06 i i
F 2000 .E”""_"____ I
o 02 A HEHIHEHHE HIH
1000 £
0+
o ) SR
10 500 1k 2k 10k SOk 100Kk 500K 1M U
Message Size (Bytes) Number of Messages
Fig. 3. RTT measurement in a LAN Fig. 4. Effectiveness of message queueing
B JXTA Pipes @PAWN Remote Method Call t{ound ’I‘rlp Tlme communica-
2500 tion (RTT) over LAN: This ex-
£ 3000 periment evaluates the round trip
g 2500 time of messages sent from a peer

1500 running the Application Monitoring
and Steering service, to peers run-
ning the Application Runtime Con-
5 0 15 W 25 30 trol service over a LAN. The mes-
Number of Synchronous Messages sage size varies from 10 bytes to 1
Megabyte. The Pawn services (AMS
Fig. 5. PawnRPC over JXTA pipes and ARC) build the query and re-
sponse messages that are then sent
using the JXTA Endpoint Routing Protocol. The overall message transfer time
is tightly bound to the performance of the JXTA platform, and is likely to im-
prove with the next generation JXTA platform. The results are plotted in Fig.3.
Note that the difference in RTT between 2 peers and 20 peers decreases as the
message size increases.
Effectiveness of message queuing: This experiment compares the behavior
of a Pawn rendezvous peer implementing the application-level message queu-
ing to the behavior of a core JXTA rendezvous peer. The number of messages
published on the rendezvous peer range from 10 to 500. The ratio of messages
received is plotted in Figure 4. It can be seen that the message queuing func-
tionality guarantees that no application-level messages are dropped even under
heavy load.
Overhead of PawnRPC on JXTA pipes: Figure 5 shows a comparison be-
tween PawnRPC and JXTA pipes. Using PawnRPC, a message describing the
remote call is marshaled and sent to the remote peer. The remote peer unmar-
shals the request, processes it before marshaling and sending back a response
to the requesting peer. The marshaling, unmarshaling, and invocation add an

Round Trip Ti
>
8




overhead on the plain pipe transaction. This overhead remains however less than
50% on average.

6 Summary and Conclusions

This paper presented the design, implementation, and evaluation of Pawn, a
peer-to-peer messaging substrate that builds on project JXTA to support peer-
to-peer interactions for scientific applications on the Grid. Pawn provides a state-
ful and guaranteed messaging to enable key application-level interactions such
as synchronous/asynchronous communication, dynamic data injection, and re-
mote procedure calls. It exports these interaction modalities through services at
every step of the scientific investigation process, from application deployment, to
interactive monitoring and steering, and group collaboration. The use of Pawn
to enable peer-to-peer interactions for an oil reservoir optimization application
on the Grid were presented. Pawn is motivated by our conviction that the next
generation of scientific and engineering Grid applications will be based on contin-
uous, seamless and secure interactions, where the application components, Grid
services, resources (systems, CPUs, instruments, storage) and data (archives,
sensors) interact as peers.

References

1. : SETIQHome. Internet: http://setiathome.ssl.berkeley.edu (1998)

2. Monson-Haefel, R., Chappell, D.: Java Message Service. O’Reilly & Associates,
Sebastopol, CA, USA (2000)

3. Fabret, F., Jacobsen, A., Llirbat, F., Pereira, J., Ross, K.A., Shasha, D.: Filtering
Algorithms and Implementation for Very Fast Publish/Subscribe Systems. ACM
SIGMOD Record 30 (2001) 115-126

4. : IBM MQSeries. Internet: http://www-3.ibm.com/ software/ts/mgseries/ (2002)

5. Seymour, K., Nakada, H., Matsuoka, S., Dongarra, J., Lee, C., Casanova, H.:
Overview of GridRPC: A Remote Procedure Call API for Grid Computing. In
Parashar, M., ed.: Proceedings of the Third International Workshop on Grid Com-
puting (GRID 2002), Baltimore,MD, USA, Springer (2002) 274-278

6. Fox, G., Pallickara, S., Rao, X.: A Scaleable Event Infrastructure for Peer to Peer
Grids. In: Proceedings of the 2002 joint ACM-ISCOPE conference on Java Grande,
Seattle, Washington, USA, ACM Press (2002) 66-75

7. Furmento, N., Lee, W., Mayer, A., Newhouse, S., Darlington, J.: ICENI: An
Open Grid Service Architecture Implemented with Jini. In: SuperComputing 2002
(SC2002), Baltimore, MD, USA (2002) 10 pages in CDROM.

8. : IPARS: Integrated Parallel Reservoir Simulator. Internet:
http://www.ticam.utexas.edu/CSM (2000) Center for Subsurface Modeling,
University of Texas at Austin.

9. Foster, I., Kesselman, C.: The Globus Project: A Status Report. In: IPPS/SPDP’98
Heterogeneous Computing Workshop, Orlando, Florida, USA (1998) 4-18

10. Parashar, M., Laszewski, G.V., Verma, S., Gawor, J., Keahey, K., Rehn, H.N.: A
CORBA Commodity Grid Kit. Special Issue on Grid Computing Environments,
Concurrency and Computation: Practice and Experience 14 (2002) 1057-1074

11. : Project JXTA. Internet: http://www.jxta.org (2001)



