
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414
Published online 8 April 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.899

Enabling interactive and
collaborative oil reservoir
simulations on the Grid

Manish Parashar1,∗,†, Rajeev Muralidhar1, Wonsuck Lee2,
Dorian Arnold3, Jack Dongarra4 and Mary Wheeler5

1The Applied Software Systems Laboratory, Rutgers University, Piscataway, NJ 08854, U.S.A.
2Computing Science Research, Bell Laboratories, Murray Hill, NJ 07974, U.S.A.
3Computer Science Department, University of Wisconsin, Madison, WI 53706, U.S.A.
4Computer Science Department, University of Tennessee at Knoxville, Knoxville, TN 37996, U.S.A.
5Center for Subsurface Modeling, University of Texas at Austin, Austin, TX 78712, U.S.A.

SUMMARY

Grid-enabled infrastructures and problem-solving environments can significantly increase the scale,
cost-effectiveness and utility of scientific simulations, enabling highly accurate simulations that provide
in-depth insight into complex phenomena. This paper presents a prototype of such an environment,
i.e. an interactive and collaborative problem-solving environment for the formulation, development,
deployment and management of oil reservoir and environmental flow simulations in computational Grid
environments. The project builds on three independent research efforts: (1) the IPARS oil reservoir
and environmental flow simulation framework; (2) the NetSolve Grid engine; and (3) the Discover
Grid-based computational collaboratory. Its primary objective is to demonstrate the advantages of an
integrated simulation infrastructure towards effectively supporting scientific investigation on the Grid, and
to investigate the components and capabilities of such an infrastructure. Copyright c© 2005 John Wiley &
Sons, Ltd.

KEY WORDS: oil reservoir simulation; Grid-based computational collaboratory; interactive monitoring and
steering; IPARS; Discover; NetSolve

∗Correspondence to: Manish Parashar, Department of Electrical and Computer Engineering, Rutgers, The State University of
New Jersey, 94 Brett Road, Piscataway, NJ 08854, U.S.A.
†E-mail: parashar@caip.rutgers.edu

Contract/grant sponsor: National Science Foundation (CAREERS, NGS, ITR); contract/grant numbers: ACI9984357,
EIA0103674 and EIA0120934
Contract/grant sponsor: Department of Energy/California Institute of Technology (ASCI); contract/grant numbers: PC 295251
and 1052856

Copyright c© 2005 John Wiley & Sons, Ltd.
Received 30 August 2003
Revised 12 January 2004

Accepted 5 February 2004

1388 M. PARASHAR ET AL.

1. INTRODUCTION

High-performance simulations play a critical role in all areas of science and engineering. As the
complexity, costs and resource requirements of these simulations grow, it has become important
for scientists and engineers to leverage the emerging computational Grid infrastructure [1,2].
Computational Grid technology provides many benefits including the abilities to launch simulations
in an automated way on remote, geographically-distributed resources, and to seamlessly
(and collaboratively) access, monitor and interactively control the simulations at runtime. Such a Grid-
enabled simulation infrastructure can significantly increase the scale, cost-effectiveness and utility of
simulations, and has the potential for enabling highly accurate simulations providing in-depth insight
into complex phenomena.

A high-level Grid-enabled simulation infrastructure provides many advantages to scientists and
engineers including:

• a high-level computational framework for developing simulation models and formulations,
configuring simulations, and specifying their runtime input parameters;

• relief from the tedium associated with finding and maintaining software libraries, toolkits,
programs and other computing resources;

• dynamic resource selection providing increased performance efficiency;
• simulation deployment from thin clients to powerful hardware resources;
• interaction and steering capabilities, which allow experts to drive the discovery process by

observing intermediate results and dynamically changing parameters to lead the simulation to
more interesting results, explore ‘what-if’ scenarios, detect and correct unstable situations and
terminate uninteresting runs early; and

• dynamic human collaborations with geographically dispersed participants to analyze and discuss
the results of increasingly complex and multi-disciplinary simulations as they run.

As a result, Grid-enabling infrastructures are critical for transforming these simulations into true
research modalities.

The primary objective of this paper is to demonstrate the advantages of an integrated simulation
infrastructure towards effectively supporting scientific investigation on the Grid, and to investigate
the components and capabilities of such an infrastructure. In this paper, we present a prototype
interactive and collaborative problem-solving environment to enable the formulation, development,
deployment and management of oil reservoir and environmental flow simulations in computational
Grid environments. Our effort leverages three independent research projects, detailed below.

• Integrated Parallel Accurate Reservoir Simulator (IPARS) is an oil reservoir and environmental
flow simulation framework. It is designed to study fluid transport and multi-phase fluid
dynamics through porous media, or more specifically, underground structures. Using IPARS,
petroleum engineers can simulate the oil recovery processes, explore the plans for optimal
oil field management and achieve maximum hydrocarbon compound recovery. Environmental
flow models in IPARS help scientists to understand groundwater flow, solute transport and its
interaction with surface flow.

• NetSolve provides the ability to efficiently and securely access hardware and software
computational resources that need not be administered by the users of the resources.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1389

Using NetSolve, we are able to provide a simple, user-friendly interface to the complex IPARS
simulator and run it on clusters of parallel processors far more powerful than the client host on
which the interface is accessed.

• The Discover computational collaboratory enables collaborative monitoring and control of
large distributed Grid applications. Using Discover, we are able to seamlessly and securely
access, monitor, interact with and steer the IPARS simulation as it runs on the Grid.
Discover’s detachable portals also provide collaboration capabilities.

The rest of this paper is organized as follows. Sections 2–4 provide overviews of IPARS, NetSolve
and Discover, respectively. Section 5 details the integration of these systems to provide a single,
coherent environment that allows scientists to collaboratively launch, monitor and steer advanced oil
reservoir simulations on a powerful computational Grid. The paper concludes with a discussion of the
resulting infrastructure and the implications of the work presented in Section 6.

2. OIL RESERVOIR SIMULATION USING IPARS

An oil reservoir is a porous geologic formation that contains at least one hydrocarbon (oil or gas) phase
in addition to water within its pore space [3]. Examination of the physical processes such as transport,
phase change and reaction in an oil reservoir are primary interests among petroleum engineers and
scientists. Normally, scientists admit macroscopic description of the porous matrix to study the physics
of fluid flow through it. More precisely, a general approach describes the aforementioned phenomena
at a small length scale that is yet larger than the linear dimension of the pore [4]. With a mathematical
definition of porous medium (see Chapter 2 of [3] for complete details), one can properly treat
phenomena in porous media using the continuum approach. Using a porous medium model, the
equations of conservation of mass, momentum and energy in a fluid continuum are averaged to deduce
the governing equations of the fluid flow through porous media. A reservoir simulation employs
this mathematical statement, that is a system of partial differential equations and a set of initial and
boundary conditions, to numerically solve the equations efficiently.

2.1. IPARS

IPARS [5,6] is a parallel reservoir simulation framework for fluid flows in porous media developed
at the Center for Subsurface Modeling (CSM), The University of Texas at Austin. The simulator
supports three-dimensional transient flows of multiple phases containing multiple components plus
immobile phases (rock and adsorbed components). There are currently ten physical models in IPARS,
including multiphase gas–oil–water, air–water flow, and reactive transport models. IPARS is primarily
implemented in Fortran, C and C++.

Unlike conventional reservoir simulation software, it supports multiple physical models which
constitute one oil reservoir. In other words, an oil reservoir can be subdivided into several subdomains
and each subdomain can be associated with an independent physical model that best describes the
characteristics of it. These models are coupled across interfaces by a set of matching or approximately
matching conservation equations and constitutive laws [7]. Also, different subdomains can be
simulated with different numerical methods for high computational efficiency. For instance, two-phase

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1390 M. PARASHAR ET AL.

(oil and water) flow model using fully implicit scheme and the same model with sequential model [8]
may co-exist for one reservoir simulation task [9].

The basis of multi-model and multi-methods implementation is the multi-block algorithm.
The multi-block algorithm in IPARS consists of decomposition of the simulation domain into multiple
non-overlapping subdomains or blocks [10]. As we discussed, each block can be associated with its
own physical model, numerical method and Grid structure that are independent from neighboring
blocks. Furthermore, the computation can be distributed among massively parallel computers or
clusters of workstations. The IPARS framework provides all the memory management, message
passing, linear solver and nonlinear solution methods, etc. [11,12].

In the following sections, we take a closer look at the mathematics of fluid flow through porous
media to reveal the essence of reservoir simulation and the computational complexities associated
with it. However, those seeking an in-depth description of the matters should be directed to [3,8,13]
and the references therein.

2.2. Mathematical models of fluid flow in an oil reservoir

The IPARS framework supports three-dimensional transient flow of multiple phases with various
components through immobile phases (rock/soil). For the sake of brevity, we present one of the most
simple forms of governing equations, that is the mathematical formulation of oil–water two-phase flow
through an oil reservoir, used in IPARS.

Immiscible multi-phase flow [14] through a porous media can be described using the mass
conservation equation for each fluid phase f, in which the convection occurs according to Darcy’s
phase velocity [3],

∂(φρfSf)

∂t
= ∇ · Uf + qf (1)

Here the subscript f represents fluid phase, f = w, o, for water and oil, respectively. φ denotes porosity
of the porous media, which may vary with water pressure and location. ρf is the density of phase f.
Sf and Uf are the saturation and the mass flux of phase f, respectively. Source and sink are applied
as qf, which represents mass flow rate; the mass flow rate is negative at production wells and positive
at injection wells in (1).

The aforementioned Darcy’s law is

Uf = −Kkrf

µf
ρf(∇Pf − ρfg∇D) (2)

In (2), K is the absolute permeability and krf is the relative permeability of phase f. Relative
permeabilities are functions of the wetting phase saturation and location. µf is the viscosity and Pf
is the pressure of the fluid phase f. Gravity is denoted by g and D is the depth from datum. Gravity can
be considered in an arbitrary direction in this model.

Equation (1) provides a set of two partial differential equations governing the simultaneous,
immiscible flow of water and oil. These equations contain four dependent variables: Pw, Po, Sw and So.
Therefore, two additional equations are needed to provide a unique solution to the system. They are

Sw + So = 1 (3)

Pc(Sw) = Po − Pw (4)

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1391

The sum of volume fractions of each phase is equivalent to 1 (3). Capillary pressure, Pc, is introduced
by (4). It may vary with location and water saturation.

Fluid density, ρf, is defined by the mass of the fluid per unit volume. In general, it depends on fluid
pressure, Pf, and temperature, T ; however, we adopt a simpler constitutive law. We assume that the
density of water phase can be described with water compressibility.

ρw(Pw) = ρwo exp(cw(Pw − Pwo)) (5)

where the subscript o in (5) indicates an initial steady state at standard condition. cw is the
compressibility of water phase and regarded as a constant. The density of oil phase, ρo, can be defined
similarly.

We use the state of pressure equilibrium as for the initial condition. From the input data, water
pressure and water saturation at a specific depth are obtained. Pressure and saturation of each Grid
element in the entire domain can be calculated for the oil and water phases using (3)–(5). At static
equilibrium, all phase fluxes are zero and phase pressures and saturations are distributed for depth only.
Above the water table, a two-phase region exists in equilibrium with the assigned capillary pressure
and water saturation relationship. Below the water table, oil saturation is set to zero.

Both pressure specified and no-flow boundaries can be employed. For instances, the outer infinite-
acting boundary is represented by a no-flow boundary condition by setting transmissibility to zero at
the boundary. A reservoir overlaid on an impermeable base can be imposed with a no-flow condition.
Mathematically, the potential gradient normal to the boundary is set to zero. For complete detail,
see [5,15,16].

In (1), qf is a source or sink term. IPARS supports an arbitrary number of vertical source and sink
with specified bottom pressure or mass flow rate. A well may penetrate through the full vertical domain
or only a part of it. A source is able to contain only a single phase (water), but a sink may have both
water and oil phases. The radial geometry is used for the source and sink so that they are equivalent to
an injection and production well. IPARS well models were developed by Wheeler [5].

Here we present a detailed discussion of the well models used in IPARS since the interaction and
steering of the IPARS simulations are driven via well parameters, which are the computational objects
to be discussed in Section 4.

The mass flow rate of phase f from source to a Grid element i is

qf,i = ρf,iGi�xiKikrf,i(PWB − P̄f,i)/µf,i (6)

where Gi is dimensionless geometric factor. It is defined by

Gi = 2π/(ln(req/rw) + s) (7)

req = 0.208 ×
√

Element volume

Wellbore length in the Grid element
(8)

Here req is equivalent radius of the Grid element center, which is a strong function of Grid size. rw is
wellbore radius and s is the skin factor. PWB is wellbore pressure at the center of the open interval in
element i. This quantity is related to bottom pressure by

PWB = PBH + ρWBg(DWB,i − DBH) (9)

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1392 M. PARASHAR ET AL.

where subscript BH denotes bottom hole and WB denotes wellbore. Therefore, ρWB is average fluid
density in the wellbore and DWB,i is the depth at the center of the wellbore open interval in element i.

P̄f,i is formation pressure of phase f in element i at the depth of the center of the open interval in
element i. It may be necessary to adjust the element center pressure for depth:

P̄f,i = Pf,i + ρf,ig(DWB,i − Di) (10)

where Pf,i is phase pressure at the center of element i. Therefore, the mass flow rate of a single phase
source is

qf =
∑

i

(
Gi�xiKikrf,iρf,i

µf,i

)
PBH +

∑
i

(
Gi�xiKikrf,iρf,i (DWB,i − DBH)

µf,i

)
gρWB

−
∑

i

(
Gi�xiKikrf,iρf,i (Pf,i + ρf,ig(DWB,i − Di))

µf,i

)
(11)

In order to make a sink term formulation, we need to consider a two-phase flow model. By definition,
the mass flow rate q is negative for sink. Wellbore density of sink term is

ρWB = qT

/ ∑
f

(qf/ρf,WB) (12)

where qT = ∑
f qf is total mass flow rate and ρf is the density of phase f, which is calculated by

ρf,WB = ρf(PBH + gρWB(DWB − DH)) (13)

Phase density ρf can be evaluated by successive replacement using a value of ρWB from the previous
nonlinear iteration or timestep in (12). At the beginning of the first timestep, the wellbore density
required for this purpose can be obtained from

ρWB =
∑

f
∑

i Gi�xiKikrf,iρf,i/µf,i∑
f
∑

i Gi�xiKikrf,i/µf,i
(14)

Since flow rates are unknown values, wellbore density cannot be directly computed from (12).
The explicit form of ρWB can be derived by combining (11) and (13).

ρWB = (−B + √
B2 − 4AC)

2A
(15)

where

A = g
∑

f

(∑
i

(
Gi�xiKikrf,iρf,i(DWB,i − DBH)

µf,i

)/
ρf

)

B = −g
∑

f

(∑
i

Gi�xiKikrf,iρf,i (DWB,i − DBH)

µf

)

+
∑

f

(∑
i

Gi�xiKikrf,iρf,i

µf,i
PBH,−

∑
i

Gi�xiKikrf,iρf,i (Pf,i + ρf,ig(DWB,i − Di))

µf,i

)/
ρf

C = −
∑

f

(∑
i

Gi�xiKikrf,iρf,i

µf,i

)
PBH +

∑
f

(∑
i

Gi�xiKikrf,iρf,i(Pf,i + ρf,ig(DWB,i − Di))

µf,i

)

The mass flow rates from each element are now evaluated explicitly using (6). Total flow rates from
the sink must be checked with (11) to ensure the net flow of each phase out of the formation.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1393

2.3. Numerics and solution procedure

Using finite difference method, a system of partial differential equations (1) is solved simultaneously
for the primary unknown variables, namely simultaneous solution method. Among the choices of the
primary unknowns, we pick Pw and Sw as primary variables by a reason which will be given later in
this section.

The simultaneous solution method was first proposed by Garvin et al. [17] and later extended by
Peaceman et al. [18], Terhune et al. [19] and Sheffield [20]. This method was initially applied to
multiphase immiscible flow problems where there is no mass exchange between the phases. The basic
idea is to generate the expansion of the derivatives with respect to primary variables in the conservation
equations.

Properties of the simultaneous solution method have been examined for many types of nonlinear
multiphase problems and fully implicit schemes have been used successfully. A fully implicit approach
for the solution of the immiscible flow equations was first introduced by Blair and Weinaug [21].
Aziz and Settari [22] performed a stability analysis of the linearized semi-implicit and fully implicit
methods and concluded that they all satisfy material balance and are unconditionally stable. Peaceman
showed a more refined, nonlinear stability analysis of the linearized method [8].

With a fully implicit scheme, the discretization leads to a set of nonlinear algebraic equations and
these equations should be solved iteratively for computational efficiency. A full Newton iteration
procedure is used, in which a system of nonlinear equations is approximated by a system of linear
equations. The residual vector is the subtraction of the right-hand side from the left-hand side of
the mass conservation equation (1). It should be noted that we discretize the mass conservation
equations (1) on the rectangular Grid geometry and use the one point upstream weighting scheme
for the transmissibility terms.

We have a certain freedom to choose primary unknowns as long as they span the solution space.
However, appropriately chosen primary variables shall deduce a simple Jacobian formulation as well as
computationally cost-effective algorithm. Here we select water pressure, Pw, and water saturation, Sw,
as primary variables. These two variables make the formulation of the elements of the corresponding
Jacobian matrix simple, and so does the evaluation of those elements at each iteration.

By applying the idea mentioned above, the resulting system equation is

�um = −(Jm(um))−1F(um) (16)

Here um = (Sm
w , Pm

w)T,�um = (�Sm+1
w ,�Pm+1

w)T, and �Sm+1
w = Sm+1

w − Sm
w ,�Pm+1

w =
Pm+1

w − Pm
w . m represents mth Newtonian iteration level, F is a residual vector from the oil and water

mass conservation equation, and Jm is Jacobian matrix of residual vector F evaluated at uk at time
level n. Here Sm

w is a representing value of the ijk Grid element, i.e. Sm
w = Sm

w,ijk and Pm
w = Pm

w,ijk .

To construct the set of Grid elements constituting the simulation domain, we used a rectangular Grid
formulation. A right prism with small control volume is our basic Grid element or cell. All the prisms
can be identical or each prism can have different lengths (�xi), widths (�yj), and/or heights (�zk) for
ijk cell.

A cell centered finite differencing is used. It can be understood as a mixed finite element with
quadrature as described in [23,24]. The position of the cell center is the arithmetic mean of the lengths
of the edges of the two adjacent prisms. For the absolute permeability at the cell center, harmonic

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1394 M. PARASHAR ET AL.

averages of the absolute permeabilities between two elements are used:

�xi+1/2 = (�xi + �xi+1)/2

�yj+1/2 = (�yj + �yj+1)/2

�zk+1/2 = (�zk + �zk+1)/2

λf = Kkrf

µw

Hi+1/2,jk = 2�yj�zk

(
�xi

Kx,i

+ �xi+1

Kx,i+1

)−1

for fluid phase f. Hi,j+1/2,k and Hij,k+1/2 are similarly defined.
Following the idea mentioned above and the general procedure of the cell centered finite differencing

or a mixed finite-element method with quadrature [23], (1) and (2) may be fully implicitly discretized
as follows:

�xi�yj�zk[(φρfSf)
n+1,m+1 − (φρfSf)

n]ijk

= �tn�xi�yj�zkq
m+1
f,ijk

+ �tn�yj�zk

{
λf,i+1/2

Pf,i+1 − Pf,i

�xi+1/2
− (λf ρfg)i+1/2

Di+1 − Di

�xi+1/2

− λf,i−1/2
Pf,i − Pf,i−1

�xi−1/2
+ (λfρfg)i−1/2

Di − Di−1

�xi−1/2

}n+1,m+1

jk

+ �tn�zk�xi

{
λf,j+1/2

Pf,j+1 − Pf,j

�yj+1/2
− (λfρfg)j+1/2

Dj+1 − Dj

�yj+1/2

− λf,j−1/2
Pf,j − Pf,j−1

�yj−1/2
+ (λfρfg)j−1/2

Dj − Dj−1

�yj−1/2

}n+1,m+1

ki

+ �tn�xi�yj

{
λf,k+1/2

Pf,k+1 − Pf,k

�zk+1/2
− (λfρfg)k+1/2

Dk+1 − Dk

�zk+1/2

− λf,k−1/2
Pf,k − Pf,k−1

�zk−1/2
+ (λfρfg)k−1/2

Dk − Dk−1

�zk−1/2

}n+1,m+1

ij

+ �tnq
n,m+1
f,ijk (17)

Here the superscripts n and m denote the time level and the Newtonian iteration level, respectively.
�tn = tn+1 − tn is the timestep at time level n. In the discretization written above, all the variables
are the functions of both location and time. However, the finite difference equation is not complete
since the right-hand side of (17) includes the terms which require m + 1 iteration level evaluations
of the pressure variable. The m + 1 iteration level evaluation can be obtained by the first-order Taylor
expansion, for instance, a variable � of phase f at the m+1 level iteration has the following expression:

�m+1
f ≈ �m

f + ∂�

∂Pf
�Pm+1

f,ijk + ∂�

∂Sf
�Sm+1

f,ijk (18)

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1395

All of the terms in Equation (17) should basically experience the same procedures to perform
Newtonian iterations.

To end this section, we give a brief description of the simulation: IPARS computes the initial
condition of the reservoir. The simulation begins with the given initial timestep size. The system of
nonlinear equation (18) is solved which may involve several linear solutions of (17). If the linear solver
or the Newton iteration fails, the simulator cuts the timestep size and resolves the system. The timestep
size can be increased by a user specified factor if the solutions are found for a certain number of
successive steps.

2.4. Computational aspects of IPARS simulations

IPARS simulates oil and gas reservoirs, which often have very complex geological formations.
Mathematical and numerical challenges are significant to handle highly nonlinear and coupled flows
with multiscale, multiphase, multicomponent and multiphysics features.

Under these circumstances, in order to accurately and efficiently simulate a reservoir with, say,
1000 km2 lateral area with 100 m depth, the requirements of computational resources are huge.
Such a reservoir needs millions of computational Grid elements to be simulated accurately. In light
of this, the primary goal of a typical simulator is to support realistic and high-resolution reservoir
studies with a million or more Grid elements.

To address this challenge, IPARS is designed for parallel distributed memory machines.
On multiprocessor machines, the domain Grid is distributed among the processors such that each
processor is assigned a subset of the total Grid system. Dynamic domain decomposition is used
to distribute Grid elements among the processors. Although a million-Gridblock hydrocarbon
compositional model, simulating a complicated oil recovery process, may have taken months on a
decent workstation, the simulation can be done in just an hour on a reasonable parallel computer
system, for instance, a 64-node PC cluster.

3. THE NETSOLVE GRID COMPUTING SYSTEM

The primary aim of the NetSolve project is to create an infrastructure that provides seamless, reliable
access to loosely-connected, organizationally and/or geographically distributed hardware and software
resources. NetSolve enables these services by running a set of service daemons, servers and agents, on
participating computer hosts that can be accessed by client programs via the NetSolve programming
application programmer interface (API). A brief overview of the NetSolve system is discussed
below. A complete discussion of NetSolve and NetSolve-related topics may be found in [25,26];
other NetSolve publications and the software is available at [27].

3.1. NetSolve overview

The typical instance of a NetSolve Grid is a set of heterogeneous computer nodes connected via
some networking infrastructure. The geographical expanse may range from a single multi-processor
environment such as an IBM SP with a high-speed interconnect to widely remote nodes connected
via the commodity Internet or exclusive high-performance networks such as Abilene and vBNS.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1396 M. PARASHAR ET AL.

...Matlab SCIRun Custom

Applications
PSEs and

C API Fortran API

Middleware

Metacomputing
Resources NetSolve

Server

NetSolve Agent

Fault Tolerance Resource Allocation

Resource Discovery Load Balancing

Figure 1. An architectural overview of the NetSolve system.

NetSolve uses a client/agent/server model and is available for all popular variants of UNIX; parts
of the system are also available for the Microsoft Windows operating system.

The major components of the NetSolve system are the NetSolve agent, an information service
and resource manager, the NetSolve server, a networked computer configured to allow access
to computational hardware and software, and the NetSolve client libraries, which allow users to
instrument their application code with requests for remote computational services. Figure 1 shows
the infrastructure of the NetSolve system and its relation to the applications that use it. NetSolve and
systems like it are often referred to as Grid middleware. The shaded parts of the figure represent
the NetSolve components that act as the intermediate or ‘middle’ layer that binds the application
or user to the hardware and software services needed to perform useful computations. A number of
command-line and Web-based tools exist to allow NetSolve system administrators (maintainers of
running NetSolve servers and agents) to detect and modify the system’s configuration. These tools
allow for querying the configuration and modifying it by terminating agents or servers, or reconfiguring
servers with new or different services, etc. The NetSolve philosophy is that client-users need not
be administrators of a NetSolve server pool. Pools can be hosted by individuals, departments or
organizations and the appropriate administrators can use access control mechanisms to determine the
‘openness’ of the pool, i.e. which clients can access which servers/services. Furthermore, servers from

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1397

multiple administrative domains can be combined into a single pool—each individual server having
the ability to selectively render services to clients‡.

3.2. The NetSolve components

The NetSolve client API libraries allow an application to leverage the computational hardware and
software resources served by the NetSolve Grid using a remote procedure call (RPC) model. In the
simplest case, NetSolve transmits input data from a client to a server, performs the requested service
and transports output data back to the requesting client. NetSolve supports many data types, including
vectors, matrices and sparse matrices of native types. Client requests may be synchronous (blocking)
or asynchronous (non-blocking) and NetSolve supports many other features to provide reliability, fault
tolerance and optimal performance.

A computer host becomes a NetSolve server when it is configured to run the NetSolve server
daemon. During server initialization, the server determines the hardware capabilities (performance
rating, number of processors, etc.) and software services it has been configured to serve. The server
registers this information with the NetSolve agent and then waits for incoming service requests.
The configuration parameters that a NetSolve server administrator may specify include a server’s CPU
load threshold, scratch space for temporary files, number of simultaneous service requests permitted
and the domains and users from which requests will be accepted.

To keep NetSolve as general as possible, we define a formal problem description that allows server
administrators to describe new services they wish to provide via their servers.

From a client’s perspective, a problem is a 3-tuple: <name, inputs, outputs> where:

• name is a character string containing the name of the problem;
• inputs is a list of input objects;
• outputs is a list of output objects.

These items are specified in a problem description file (PDF) that also specifies libraries containing
the implementations of any underlying functions or services being interfaced by NetSolve and a code
that uses some pre-defined macros to extract data elements from the NetSolve input objects, pass them
to the underlying service functions, and place output results back into NetSolve output objects. A tool
called the code generator parses this PDF to create actual C code that is then linked with NetSolve
auxiliary libraries (that transfer data to/from client programs and handle other generic service tasks)
and those libraries specified by the PDF to create a service executable. NetSolve’s PDF mechanism is
similar to IDLs as used in systems such as CORBA.

The NetSolve agent acts as a client’s entry point into the system and also manages server resources.
As an information service, the agent maintains a comprehensive view of the status of all NetSolve
server components and their interactions with clients. It keeps track of the software capabilities of
the servers and is able to schedule client requests to appropriate servers. As a resource allocator at
request time, the agent uses server-provided performance ratings and dynamic network benchmarks to

‡Such a NetSolve pool, encompassing machines all over the world is accessible via the NetSolve agent running at
http://netsolve.cs.utk.edu. This system is an extremely open system accessible to anyone using the NetSolve system.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1398 M. PARASHAR ET AL.

������������	

����

������
����	�

�

�������	
�

�

�������	
�

�
�
�
�

�

�
�
�
�
�
�

�
�
�
�

�

�
��
�
��

�
�
��
��
�

�����

��������� �

�����������!�

"������#����	$

���!���
%�&�

�'(�
��)

'���������
'*��+"��
���!���

�
+
�
,
�

�

�
�
*

�

**
+
�

�

)����
-
��.���

'��������

*	
��
��
��
��
	

-

�
��
��
�	
/

�
�
��
�	
��
��
��
�
	

�

�
��
�
��
�&

"
��
�
�
��
#�
��
�
	

������
���!���

0��*�������������1

�����&
����2,���

�
��
��
�
	

�
��
�
�!
�
�

'
�
��
�
�
��

�
�
	

��
�

�

��
��
��
�
	

*
	
��
��
��
��
	

�
��
!
��
�

�����������	
�����	

���!����

'*+�

��*

'*+�
*	��������	

�/�	��

*	��������	

�	����

��.
������	��

+�3����

�

�������	
4

����

������������	

����

�

�������	
4

"�#
����

*	
��
��
��
��
	

�
	

�
�
��
�
�
�
��
��
�
	

�
�
��
�
��

�

������
����	�

Figure 2. Architectural schematic of the Discover computational collaboratory.

calculate an estimated turn-around time for each service request. The most efficient and capable server
is elected for the task.

4. THE DISCOVER COMPUTATIONAL COLLABORATORY

Discover [28] is an interactive computational collaboratory that combines Grid-enabled middleware
services, application control networks with sensors and actuators and pervasive portals, and enables
seamless and secure access to geographically distributed resources, applications and data on the Grid.
Using the Discover collaboratory, scientists and engineers can discover and access applications and
services on the Grid as long as they have appropriate privileges and capabilities. Furthermore, they
can form or join collaboration groups and can securely, consistently and collaboratively monitor,
interact with and steer these applications based on their privileges and capabilities. Discover is
currently operational and is being used to provide interaction capabilities to a number of scientific and
engineering applications, including oil reservoir simulations, computational fluid dynamics, seismic
modeling and numerical relativity.

4.1. Discover architecture

A conceptual overview of the Discover architecture is presented in Figure 2. It is composed of three key
components: (1) middleware substrate that integrates Discover interaction and collaboration servers

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1399

and enables interoperability with external Grid services; (2) application control network combining
sensors, actuators and interaction agents to enable interactive monitoring and steering of distributed
applications; and (3) pervasive detachable portals for collaborative access to the Grid applications.
These components are briefly described below.

4.1.1. Discover middleware substrate

The Discover middleware substrate [29] defines interfaces and mechanisms for a peer-to-peer
integration and interoperability of services provided by domain specific collaboratories on the
Grid. This means an interoperability between geographically distributed instances of the Discover
collaboratory. Furthermore, the middleware substrate integrates Discover collaboratory services
with the Grid services provided by the Globus Toolkit [30] using the CORBA Commodity Grid
(CORBACoG) Kit [31]. Clients can use the middleware substrate to locate available resources
on the Grid, allocate required resources, run applications on these resources, and connect to and
collaboratively monitor, interact with and steer these applications. The middleware substrate enables
Discover interaction and steering servers as well as Globus servers to dynamically discover and connect
to one another to form a peer network. This allows clients connected to their local servers to have global
access to all applications and services across all the servers in the network based on their credentials,
capabilities and privileges. Details about the implementation and operation of the current Discover
middleware substrate can be found in [29,32].

4.1.2. DIOS interactive object framework

DIOS is a distributed object infrastructure that enables the development and deployment of
interactive Grid applications. It addresses three key challenges: (1) definition and deployment
of interaction objects that extend distributed and dynamic computational objects with sensors
and actuators for interaction and steering; (2) definition of a scalable control network that interconnects
interaction objects and enables object discovery, interrogation and control; and (3) definition of
an interaction gateway that enables remote clients to access, monitor and interact with applications.

DIOS is composed of two key components: (1) interaction objects that encapsulate sensors and
actuators; and (2) a hierarchical control network composed of Discover agents, base stations and an
interaction gateway. Interaction objects extend the application’s computational objects (data structures
used by the application) with monitoring and steering capabilities by providing abstractions for creating
sensors and actuators. Interaction objects are created by deriving the computational objects from a
virtual interaction base class of the interaction object library. The derived objects define a set of views
that they can provide and a set of commands that they can accept. Interaction objects can be either
local to a single computational node, distributed across multiple nodes or shared between some or all
of the nodes. Furthermore, interaction objects can be dynamically created or deleted during application
execution, can migrate between computational nodes or modify its distribution by notifying appropriate
interaction agents.

The control network is a hierarchical structure composed of: (1) Discover agents on each node;
(2) base stations for each interaction cell; and (3) an interaction gateway that connects to the interaction
server and provides a proxy to the entire application. The network is automatically configured at run-
time using an underlying messaging environment (e.g. MPI) and the available number of processors.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1400 M. PARASHAR ET AL.

Figure 3. The Discover collaborative interaction/steering portal.

Discover agents, base stations and the gateway each maintain registries of interaction objects registered
in their respective domains (node, cell, entire application, respectively). The gateway is additionally
responsible for interfacing with the interaction server, delegating interaction requests to the appropriate
interaction agents (Discover agents and/or base stations), and collecting their responses. In the case of
distributed objects, the gateway also performs a gather operation for collating the responses arriving
from the corresponding nodes. A recent extension to DIOS allows clients to define and deploy rules to
automatically monitor and control applications and/or application objects. The conditions and actions
of the rules are composed using the exported view/command interfaces. A distributed rule-engine is
built in the control network that authenticates and validates incoming rules, decomposes the rules and
distributes triggers to appropriate application objects, and manages the execution of the rules. A more
detailed description of the DIOS framework can be found in [33].

4.1.3. Discover interaction and collaboration portals

The Discover portal enables remote, collaborative access to applications, application objects and Grid
services and provides scientists and engineers with an anytime/anywhere capability for seamlessly
and securely launching, accessing, monitoring and controlling Grid applications. It also provides
a replicated shared workspace architecture and integrates collaboration tools such as chat and
whiteboard. Furthermore, it integrates ‘collaboration streams’, which maintain a navigable record of
all client–client and client–applications interactions and collaboration. A screenshot of the current
Discover portal is presented in Figure 3.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1401

5. ENABLING INTERACTIVE OIL RESERVOIR SIMULATIONS ON THE GRID

In this section, we describe the integration of our three building blocks (IPARS, NetSolve and
Discover) outlined above, and present the engineering of a prototype interactive and collaborative
problem-solving environment for Grid-based oil reservoir simulations. Specifically, we first describe
how the IPARS simulator is enhanced by Discover to enable runtime simulation analysis, interaction
and collaboration. We then present the transformation of the Discover-enhanced IPARS simulator
into a NetSolve service. We conclude this section by demonstrating how the completed integration
environment may be used in practice.

5.1. Interactive and collaborative IPARS simulations using Discover

The goal of the IPARS–Discover integration is to transform traditional batch IPARS simulations
into more interactive and collaborative simulations. Interactive IPARS simulations provide many
benefits. For example, petroleum production engineers working with oil reservoir simulations often
want to change the number of active wells, their types, their locations and some of the conditions
in field activity. Similarly, environmental hydrologists working with simulations of the transport of
groundwater over a period of dry and rainy seasons can effectively study a real-world situation by
interactively changing conditions at soil boundaries.

The IPARS–Discover integration augments IPARS with runtime monitoring and tracking capabilities
that provide users with a ‘window-in-the-oven’ view of the simulations, and allow them to visualize
and track the simulation domain. Furthermore, it provides interactive steering capabilities that allow
the state of simulation to be controlled and managed at runtime. In order to ensure ‘safe steering’
and that the state of the simulation remains consistent, users are only allowed to control specific
parameters and objects and in controlled ways. Furthermore, interaction/steering is only allowed at
well-defined interaction points in the simulation. For instance, one cannot arbitrarily change the values
of the primary unknowns as this can cause the results to be completely non-physical, and could break
convergence properties or possibly the whole simulation. Similarly, if users are allowed to change
parameters in the middle of time steps, an abrupt change of a variable may make the linear system
ill-conditioned.

In our implementation, interaction points and interaction objects/parameters are defined by the
algorithm/simulation designer so as to ensure consistency and provide maximum flexibility within
the application domain. In the case of IPARS, wells and boundary conditions are the candidate objects
for steering. The simulation of the petroleum engineering application is driven by the wells placed at
different geographical locations with different settings. Critical simulation parameters for wells include
the number of wells, the type of the wells (e.g. pressure specified water injection, oil mass rate specified
production, etc.), the well-bore diameter, the injection/production rate and the bottom hole depth of the
well, etc.

The overall IPARS–Discover integration consists of four steps. The process is described in the
following sections.

(1) Registration. IPARS simulations are registered with the Discover system using the Discover Web
registration form to receive a unique identifier for each simulation. Authorized clients and their
capabilities and access privileges are specified during registration.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1402 M. PARASHAR ET AL.

(2) Creation of interaction objects. The DIOS library is used to construct interaction objects from
IPARS computational data-structures and to export their interaction interfaces to a Discover
server.

(3) IPARS simulation execution. Once the simulation is launched, the IPARS identifier obtained
during registration is used to authenticate the application with the Discover middleware.
During execution, application information is automatically exported and updated at the servers
using the DIOS control network.

(4) IPARS simulation interaction and steering. Distributed clients discover and connect to running
IPARS simulations using the Discover Web portals. Clients can initiate or join interaction and/or
collaboration sessions and can monitor, interact with and steer the simulation based on their
capabilities and privileges.

5.1.1. Constructing interactive IPARS simulations

Enabling the monitoring and interactive steering of parallel and distributed applications requires the
definition and deployment of sensors and actuators required to monitor and control the application
objects (i.e. the wells and boundary conditions in IPARS simulations). Defining these interaction
interfaces and mechanisms in a generic manner, and co-locating them with the application’s
computational objects can be non-trivial. This is because the structures of application computational
objects vary significantly, and the objects can span multiple processors and address spaces.
Another issue is the construction of a control network that interconnects these sensors and actuators so
that commands and requests can be routed to the appropriate set(s) of computational objects (depending
on the current distribution of the object), and the returned information can be collated and coherently
presented. Finally, the interaction and steering interfaces presented by the application need to be
exported so that they can be accessed remotely, using standard distributed object protocols, to enable
application monitoring and control.

The construction of interactive IPARS simulations is described below. Note that IPARS simulations
are primarily Fortran-based requiring that the application data structures be wrapped by C++ wrappers
before they can be integrated with DIOS. This process involves the following steps for every data
structure that needs to be monitored and steered.

(1) Identify the computational data that need to be monitored and steered.
(2) Objectify the data structure, i.e. create C++ object wrappers for each computational data-

structure. Care must be taken while mapping Fortran datatypes and arrays to C++.
(3) Derive the newly formed class from the appropriate DIOS base class depending on whether it is

distributed or not.
(4) Override the virtual function exportInterfaces() to export the views and commands for

the data structure using the DIOS API functions addView() and addCommand().
(5) Override the virtual function processMessage() to process interaction requests.
(6) Create instances of the interaction objects within the application and register them with the DIOS

interaction agents.

These steps are described below.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1403

5.1.1.1. Identifying computational objects. The first step in making an application interactive is
to identify the important data structures of the application that are necessary to steer the simulation.
In oil reservoir simulations, wells placed at different geological locations drive the dynamics of fluids
flow inside the reservoir. The transient behavior of the fluids can be widely different depending on
the number of wells, their types, and their characteristics. As a result, these are the critical simulation
parameters that should be monitored and steered. Therefore, we identify an oil well as a computational
object that can be used to drive the simulation and will use the IPARS well as an example in the
discussion below. Key IPARS simulator well parameters (defined as Fortran data types) are summarized
below.

WELLTOP(,s,t) = X,Y,Z OF TOP OF INTERVAL s FOR WELL t (FEET)

WELLBOT(,s,t) = X,Y,Z OF BOTTOM OF INTERVAL s FOR WELL t (FEET)

WELLDIAM(s,t) = WELLBORE DIAMETER OF INTERVAL s FOR WELL t (FEET)

DEPBOT(t) = BOTTOM HOLE DEPTH OF WELL t (FEET)

DEPTOP(t) = TOP HOLE DEPTH OF WELL t (TOP OF COMPLETION) (FEET)

NUMWEL = NUMBER OF WELLS

NWELPRC(t) = PROCESSOR THAT OWNS WELL t

WELNAM(t) = WELL NAME OF WELL t

WELBHP(t) = WELL BOTTOM HOLE PRESSURE IN WELL t (PSI)

KWELL(t) = CURRENT WELL TYPE OF WELL t (e.g. SHUT IN, WATER INJECTION,

= PRODUCTION, GAS INJECTION, etc.)

TITHIS(h) = DESCRIPTION OF WELL HISTORY DATA TYPE h

= (e.g. WATER/GAS INJECTION RATE, OIL/WATER PRODUCTION RATE,

= GAS PRODUCTION RATE, WATER/OIL RATIO, GAS/OIL RATIO, etc.)

..........

5.1.1.2. Creating object wrappers. Now that we have identified the critical well parameters that are
required for driving the simulation, we proceed to create a computational well object. In order to do
this, we develop one or more C++ wrapper classes that will contain the relevant well data/parameters.
This process consists of the following steps.

(1) The Fortran data elements are mapped to corresponding types in C/C++. For example REAL*4
is mapped to float, REAL*8 to double and INTEGER to int.

(2) A C++ class is created that maintains references to all relevant parameters with an IPARS
simulation. This class is the first class instantiated when the application initializes and is
called the IPARSApplication class. It is instantiated only once at startup. Subsequent
classes needed to maintain simulation data use these references. A bare bone skeleton of the
class is listed below (note that not all data members are shown here). It can be seen that
the IPARSApplication class has a constructor that takes in all the relevant references to
the data elements of the simulation.

#include <Discover.h>
class IPARSApplication
{
private :

char* welnam; /* name of well */

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1404 M. PARASHAR ET AL.

int* numwel; /* well number */
float* deptop; /* top hole depth of well */
float* depbot; /* bottom hole depth of well */
int* kwell; /* current well type of well */
int* nwelprc; /* processor that owns this well */
float* welldiam;/* wellbore diameter for each interval */
float* welltop; /* x,y,z of top of each interval for well t */
float* wellbot; /* x,y,z of bottom of each interval for well t */
double* welbhp; /* well bottom hole pressure */
.......

public :
IPARSApplication(char* welname, int* numwell, float* topdep,

float* botdep, int* welltype, int* nprcwell,
float* welldia, float* welltop, float* wellbot,
double* wellbhp, ...);

˜ IPARSApplication();
};

(3) Now, a class is created that contains all information necessary to maintain the simulation
parameters of a well. This class is called the IPARSWell class and only contains the
information pertaining to a single well. It is constructed from the IPARSApplication class.
A typical simulation will have multiple instances of the IPARSWell class, which may be
dynamically created at runtime. Note that this class is derived from an appropriate DIOS base
class depending on whether the object is distributed or not. A sample IPARSWell class is listed
below.

#include <Discover.h>
class IPARSWell : public DIOS IObject
{
private :

char* welnam; /* name of well */
int numwel; /* well number */
float deptop; /* top hole depth of well */
float depbot; /* bottom hole depth of well */
int kwell; /* current well type of well */
int nwelprc; /* processor that owns this well */
float welldiam; /* wellbore diameter for each interval */
float welltop; /* x,y,z of top of each interval for well t */
float wellbot; /* x,y,x of bottom of each interval for well t */
double welbhp; /* well bottom hole pressure */
.......

public :
IPARSWell(int wellnum, IPARSApplication& theApp);
/* all member variables are initialized using the
IPARSApplication pointer */
˜ IPARSWell();
/* All other member functions here */
.......
/* overridden virtual functions */
.......

};

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1405

5.1.1.3. Creating sensors and actuators. The next step consists of adding view (sensors) and
command (actuators) interfaces to each computation object created. In the case of IPARS, this involves
adding methods to the IPARSWell class that can be used to monitor and steer each well object in the
simulation.

Adding view interfaces. The views that an object exports depend on the nature of object and the types of
interactions desired. We illustrate the process below using simple examples. More complex monitoring
functionalities, for example, generating two- and three-dimensional visualization plots or movie files
of the simulation process, can be similarly defined. In our example, we add the following methods to
the IPARSWell class for processing view requests.

(1) A method to extract complete information for the well object. This information is a formatted
text stream that can be easily interpreted and displayed at the client end.

(2) A method to extract only the well information that is computed in the current iteration of
simulation.

(3) A method to generate two-dimensional plots for well parameters such as oil/water production
ratio, oil production rate, etc. These parameters are plotted as evolving parametric plots and
provide information about the behavior of the well.

Adding command interfaces. Command interfaces can be similarly defined to enable the desired
interaction by adding methods to modify relevant well parameters. In the example below, commands
are added to enable each of the well parameters to be controlled.

The resulting IPARSWell class with sensors and actuators defined is listed below.

class IPARSWell : public DIOS IObject
{
private :

/* all member variables */
.......

public :
/* constructors, etc. */
.......
/* overridden virtual functions */
void exportInterfaces();
void processMessage(Message* msg);
/* VIEW INTERFACES */
String WellDescr();
String PlotWellParams();
.......

/* COMMAND INTERFACES */
String SetTopHoleDepth(char*argv[]);
String SetBottomHoleDepth(char*argv[]);
String SetWellType(char*argv[]);
String SetWellBoreDiameter(char*argv[]);
String SetWellTop(char*argv[]);
String SetWellBottom(char*argv[]);
String SetBottomHolePressure(char*argv[]);
.......

};

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1406 M. PARASHAR ET AL.

5.1.1.4. Creating interaction objects. The next step in enabling interaction is to transform
the created computational object into an interaction object. This essentially involves exporting
the interaction information (views and commands) to the external interactivity system. This is
achieved by overriding two virtual functions of the DIOS IObject base class. The first function,
exportInterfaces(), exports the interaction interfaces of the object. The second function,
processMessage(), invokes the appropriate interaction interface (view or command method) in
response to an interaction request (message). This is illustrated in the code segment below.

void IPARSWell::exportInterfaces()
{

setType(DIOS GLOBAL NONSCALAR);
/* Export VIEWS */
addView("WellDescription", "TEXTDISPLAY");
addView("PlotWellParams", "POINTPLOT");
.......

/* Export COMMANDS */
addCommand("SetTopHoleDepth(float)","Top Hole Depth", "float");
addCommand("SetBottomHoleDepth(float)","Bottom Hole Depth", "float");
addCommand("SetWellType(int)", "Well type","int");
addCommand("SetWellBoreDiameter(interval,float)","Well Bore Dia",

"int,float");
addCommand("SetWellTop(interval,x,y,z)","Well Top Coords",

"int,float,float,float");
addCommand("SetWellBottom(interval,x,y,z)","Well Bottom Coords",

"int,float,float,float");
addCommand("SetBottomHolePressure(double)", "Bottom Hole Pressure",

"double");
.......

}

void IPARSWell::processMessage(Message* request)
{ /* request contains the name of the interface to be

invoked and arguments to be passed, for commands */
String interface = request->getInterface()->getName();
String rettype = request->getInterface()->getReturnType();
String response;
if (interface == "WellDescription")

response = WellDescr();
else if(interface == "PlotWellParams")

response = PlotWellParams();
else if(interface == "SetTopHoleDepth")

response = SetTopHoleDepth(request->args());
else if(interface == "SetBottomHoleDepth")

response = SetBottomHoleDepth(request->args());
else if(interface == "SetWellType")

response = SetWellType(request->args());
else if(interface == "SetWellBoreDiameter")

response = SetWellBoreDiameter(request->args());
else if(interface == "SetFaultBlockNumber")

response = SetFaultBlockNumber(request->args());

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1407

else if(interface == "SetWellTop")
response = SetWellTop(request->args());

else if(interface == "SetWellBottom")
response = SetWellBottom(request->args());

else if(interface == "SetBottomHolePressure")
response = SetBottomHolePressure(request->args());

.......

setResponse(interface, rettype, response);
}

5.1.1.5. Registering interaction objects. Instances of interaction objects can be dynamically created
and registered with the interaction agent during the execution of the simulation. In the simplest
scenarios, objects are registered at startup by the application using the functionregisterObject()
as follows:

/* The IPARSWell instance oilwell is registered with name “OilWell”. */
Discover->registerObject(&oilwell, ‘‘OilWell’’);

Note that every object has to be registered with a unique name. Discover is a reference to the
interaction agent initialized by the application at startup. The oilwell interaction object can be
deregistered as follows:

Discover->deregisterObject(‘‘OilWell’’);

Once deregistered, it will no longer be accessible at the client portal.

5.1.2. Collaborative interaction and steering

The DIOS enabled IPARS simulations constructed as described above can now be globally accessed
for collaborative interaction and steering via the Discover middleware infrastructure using Discover
portals. Current interaction/steering capabilities include application control (start, stop and pause),
checkpoint/rollback, query and control of parameters such as well diameter, pressure, oil/water
injection rate, etc. Figure 4 presents a screen dump of the portal showing plots tracking changes in
well parameters of interest for an IPARS implicit hydrology model simulation.

5.2. Grid-based IPARS simulations using NetSolve

This section describes the simplicity with which complex simulation systems such as IPARS can
be enhanced to leverage the Grid services that NetSolve can provide. The result of such an
integration is access to resource management, scheduling, deployment and computational hardware
services from thin clients. These widely distributed services are accessed in the same way as local
services.

When creating NetSolve services, one must consider the granularity of the services, computation
especially, in relation to the likely amount of input and output data to be transferred. Our choices
were to create a coarse-grained IPARS service that would execute the entire simulation code
remotely, or to run the IPARS simulator on the local client and export finer-grained requests for the

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1408 M. PARASHAR ET AL.

Figure 4. Interactive visualization and steering of IPARS oil reservoir simulations.

computationally-intensive numerical solvers that IPARS leverages, many of which already exist as
NetSolve services. Several factors affected our decision to create a coarse-grained IPARS service.

(1) Although most of the finer-grained solvers already exist as NetSolve services, the time to develop
a new IPARS service would be significantly less than the time to modify the IPARS simulator to
make remote requests for its computational services.

(2) Multiple remote accesses, each with input/output data transmission, for finer-grained services
coupled with necessary system overhead would be less efficient than a single service request.
Any benefit to be achieved by NetSolve’s capability to service requests simultaneously would be
minimal since IPARS leverages MPI to achieve parallelism.

(3) Running the entire simulation remotely allows for the client host to be extremely thin. This also
allows the simulator to be accessed from systems to which it has not been ported.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1409

5.2.1. Creating an IPARS service in NetSolve

The two components that NetSolve provides to create a new service are the PDF (overviewed in
Section 3) and the NetSolve code generator. The PDF is used to completely specify the intended
IPARS service, and the code generator transforms the PDF specification into a program that will be
executed by NetSolve servers configured to run this service.

IPARS is designed to receive a single file input, containing the simulation parameters and field
data definitions, and produce several output files. One output file contains the results and numerical
values of the simulation parameters in ASCII format. The other output files contain visualization
support data. An artifact of NetSolve’s historical motivation (to provide access to numerical solvers)
is the fact that the PDF expects a service to be invoked via a function call. To facilitate this PDF
convention, we implement a wrapper function to invoke the IPARS simulator. This wrapper also adds
the convenience of allowing us to post-process the simulation output to generate plots, figures and
animations, and make them accessible to the client user as service output.

A segment of the IPARS service PDF (simplified for presentation) appears below:

1. @PROBLEM ipars
2. @DESCRIPTION
3. Parallel Sub-Surface Flow Simulator.
4. @INPUT 2
5. @OBJECT STRING CHAR model
6. Physical model to use
7. @OBJECT FILE CHAR input file
8. IPARS simulation input file

...

9. @CODE
10. ipars wrapper(model, input file);
11. @ENDCODE

Most of this specification is straightforward. Line 1 defines the name that will be used to identify this
service within NetSolve. Lines 4–8 specify that the service has two input parameters, a character string
defining the physical IPARS simulation model to use, and an ASCII simulation input file. Eventually,
the IPARS wrapper function is called with the service input parameters, at line 10. For brevity of
discussion, the output file parameters have been untreated, but are specified in a similar manner to
input parameters.

With the IPARS service specification, the NetSolve code generator must be invoked to create a
IPARS service program to be launched by NetSolve servers. The job of the code generator is to produce
appropriate C code specified by the PDF that is linked with NetSolve auxiliary functions (to transfer
data to/from client programs and handle other generic service tasks) to be compiled into an IPARS
service executable. This service program will be instantiated whenever requests for the IPARS service
are needed.

5.2.2. Enabling IPARS-ready NetSolve servers

During a NetSolve server’s initialization phase, the server reads a configuration file that specifies a set
of PDFs designating the services the server will provide. Service metadata (name, number and types

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1410 M. PARASHAR ET AL.

of inputs and outputs, etc.) is registered with the NetSolve agent specified in the configuration file.
Whenever a client makes a request for the IPARS service to an agent, the agent uses static registration
data with dynamic status and performance data to determine which server(s) should be tasked with
fulfilling the request. In a wide-area Grid, the agent can efficiently and reliably choose among
multiple IPARS-ready NetSolve servers based on static parameters such as rated CPU performance
and number of CPUs, and dynamic parameters such as server workload, and network bandwidth and
latency.

The IPARS service executable is appropriately invoked by the designated NetSolve server once any
requisite authentication and authorization have been successful. This program establishes a network
connection with the requesting client for receipt of input data. The program then invokes the code
specified in the IPARS PDF with appropriate parameters; upon completion, output data is transferred
to the client on the established connection and the program exits.

5.2.3. Accessing the IPARS service via NetSolve

We now describe how clients access the IPARS service via the NetSolve interface and infrastructure.
NetSolve has function-based APIs available to different programming languages and environments
including C, Matlab and Mathematica. From the C interface, the IPARS simulation service using the
‘black oil’ reservoir model might be requested as follows:

int status = netsolve(‘‘black oil’’, input file, output file);

Upon success, this call invokes the IPARS service to run the ‘black oil’ model on some server using
the specified input and output files, ignoring visualization output for simplicity. Observe that the single
call encapsulates a battery of distributed service interactions from the user who simply makes a library
function call. We acknowledge the unwieldiness of a function-based API to access a complete program
such as the IPARS simulator. To make the interface less cumbersome, we quickly developed a Web
browser interface from which the IPARS service could be invoked via NetSolve. The browser interface
provides many advantages:

• Web browsers are ubiquitous providing access to the IPARS service from practically any
platform;

• the Discover services integrated into the IPARS simulator are also accessible via Web browsers;
• we can leverage HTML forms and CGI scripts available in browsing environments to create

specialized menus and options for composing and configuring IPARS simulations rather than
forcing users to learn the syntax of IPARS input files; the developed menu allows the selection
of physical models, engineering parameters, domain-Grid, numerical algorithmic parameters and
variables for the visualization; and

• Web browsers provide a convenient and familiar environment for viewing the simulation output
visualization files.

The result is a uniform, seamless and intuitive browser interface to all configuration, deployment,
management, interaction, steering and collaboration services.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1411

Figure 5. Schematics description of the work scenario.

5.3. An illustrative scenario

The sample usage scenario of the Grid-based interactive and collaborative oil reservoir simulations
environment presented in this paper is illustrated in Figure 5. The scenario consists of the following
steps.

(1) Simulation configuration. The scientist/engineer connects to the IPARS–NetSolve simulation
Web site from their local machine. Using the customized NetSolve interface, the engineer
configures the IPARS simulation by selecting the IPARS model and input parameters.
The engineer may upload an input file stored locally.

(2) Simulation deployment. The engineer deploys the simulation on a Grid resource by clicking a
button on the Web interface. A registered NetSolve agent processes the deployment request.
It selects an appropriate resource from currently available Grid resources and deploys the
simulation from that resource. Note that the selected resource may be a single-processor machine
or a multi-processor cluster.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1412 M. PARASHAR ET AL.

(3) Simulation access. The simulation connects to a local Discover server and exports its interaction
interfaces. The simulation can now be remotely discovered and accessed using the Discover
middleware substrate.

(4) Simulation interaction and steering. Geographically distributed scientists and engineers can now
connect to and interact with the simulation using Discover portals. The engineers can steer it
provided they have appropriate credentials and privileges. Access privileges are assigned by the
owner of the simulation. An IPARS steering session may include the following operations (based
on the view/command interfaces exported via DIOS/Discover):

• increase/decrease the water pressure at injection wells;
• increase/decrease the flow rate at production wells;
• open-up injection and/or production wells;
• shut-off injection and/or production wells;
• change boundary conditions.

Note that the simulation can always be rolled back if the steering process results in an incorrect
state.

(5) Collaboration. The distributed scientists and engineers can collaborate with each other
while interacting with and steering the simulation. They can share data and views returned
by the simulation, annotate these using whiteboard capabilities, coordinate commands sent to
the simulations (using locks), and chat with one another.

(6) Post-simulation. Once the simulation is completed, all the participants can access the output files
from the simulation.

6. SUMMARY AND CONCLUSIONS

In this paper, we have presented a prototype interactive and collaborative problem-solving environment
to enable the formulation, development, deployment, and management of oil reservoir and
environmental flow simulations in computational Grid environments. The primary objective of this
research effort was to demonstrate the advantages of such an integrated simulation infrastructure
in effectively supporting scientific investigation on the Grid, and to investigate the components
and capabilities of such an infrastructure. The prototype problem-solving environment essentially
integrated the capabilities of three independent research projects: (1) IPARS oil reservoir and
environmental flow simulation framework; (2) NetSolve Grid computing engine; and (3) Discover
computational collaboratory. The operation of the infrastructure was demonstrated using a sample
application scenario.

ACKNOWLEDGEMENTS

We would like to thank the members of the Discover team, V. Bhat, S. Kaur, V. Matossian and S. Verma for their
contributions to this project. We also thank M. Peszyńska, J. Wheeler and S. Bryant for their invaluable help in
bringing this project to fruition.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

INTERACTIVE AND COLLABORATIVE OIL RESERVOIR SIMULATIONS ON THE GRID 1413

REFERENCES

1. Foster I. Internet computing and the emerging Grid, December 2000.
http://www.nature.com/nature/webmatters/grid/grid.html.

2. Foster I, Kesselman C. (eds.). The Grid, Blueprint for a New Computing Infrastructure. Morgan Kaufmann: San Mateo,
CA, 1998.

3. Bear J. Dynamics of Fluids in Porous Media. Elsevier: New York, 1972.
4. Kaviany M. Principles of Heat Transfer in Porous Media (2nd edn). Springer: New York, 1995.
5. Wheeler J. Ipars simulator framework user’s guide. Technical Report, Center for Subsurface Modeling, The University of

Texas, Austin, TX, 1998.
6. The IPARS Project Web site. http://www.ices.utexas.edu/CSM/web/ipars.html.
7. Lu Q, Peszyńska M, Wheeler MF. Multiphysics coupling of codes. Computational Methods for Subsurface Flow and

Transport (Computational Methods in Water Resources, vol. 1), Brebbia CA, Gray WG, Bentley LR, Sykes JF, Pinder GF.
(eds.). A. A. Balkema: Rotterdam, 2000; 175–182.

8. Peaceman DW. Fundamentals of Numerical Reservoir Simulation. Elsevier: New York, 1977.
9. Lu Q, Peszyńska M, Wheeler MF. Coupling different numerical algorithms for two phase fluid flow. Mathematics of

Finite Elements and Applications X (MAFELAP 1999), Whiteman JR. (ed.). Elsevier: Amsterdam, 2000; Chapter 12,
205–214.

10. Lu Q, Peszyńska M, Wheeler MF. A parallel multi-block black-oil model in multi-model implementation. Society of
Petroleum Engineers Journal 2002; 7(3):278–287.

11. Wheeler MF, Arbogast T, Bryant S, Eaton J, Lu Q, Peszyńska M, Yotov I. A parallel multiblock/multidomain approach to
reservoir simulation. Proceedings of the 15th SPE Symposium on Reservoir Simulation. Society of Petroleum Engineers:
Houston, TX, 1999; 51–62.

12. Wheeler JA, Wheeler MF, Peszyńska M. A distributed computing portal for coupling multi-physics and multiple domains
in porous media. Computational Methods for Subsurface Flow and Transport (Computational Methods in Water Resources,
vol. 1), Brebbia CA, Gray WG, Bentley WG, Sykes JF, Pinder GF (eds.). A. A. Balkema: Rotterdam, 2000; 167–174.

13. Ewing RE, (ed.). The Mathematics of Reservoir Simulation (Frontiers in Applied Mathematics, vol. 1). SIAM:
Philadeliphia, PA, 1984.

14. Dagan G. Flow and Transport in Porous Formations. Springer: New York, 1989.
15. Wheeler MF, Lee W, Noh M-H. Air-water flow simulation in unsaturated porous media. Computational Methods for

Subsurface Flow and Transport (Computational Methods in Water Resources, vol. 1), Brebbia CA, Gray WG, Bentley LR,
Sykes JF, Pinder GF, (eds.). A. A. Balkema: Rotterdam, 2000; 93–100.

16. Noh M-H. A twophase air-water subsurface flow model. Masters Thesis, The University of Texas at Austin, TX, 1999.
17. West WJ, Garvin WW, Sheldon SW. Solution of the equations of unsteady state two-phase flow in oil reservoirs.

Transactions of the AIME 1954; 201:217–219.
18. Peaceman DW, Douglas J Jr, Rachford HH. A method for calculating multi-dimensional immiscible displacement.

Transactions of the American Institute of Minerals, Metallurgy and Petroleum Engineering 1959; 216:297–308.
19. Terhune MH, Coats KH, Nielsen RL, Weber AG. Simulation of three-dimensional, two-phase flow in oil and gas reservoirs.

Society of Petroleum Engineers Journal 1967; 7:377–388.
20. Sheffield M. Three phase flow including gravitational, viscous and capillary forces. Society of Petroleum Engineers Journal

1969; 9:255–269.
21. Blair PM, Weinaug CF. Solution of two-phase flow problems using implicit difference equation. Society of Petroleum

Engineers Journal 1969; 9:417–424.
22. Aziz K, Settari A. Petroleum Reservoir Simulation. Applied Science Publishers: London, 1979.
23. Arbogast T, Dawson C, Wheeler MF. A parallel algorithm for two phase multicomponent contaminant transport.

Applications of Mathematics 1995; 3:163–174.
24. Russell TF, Wheeler MF. Finite element and finite difference methods for continuous flows in porous media. The

mathematics of reservoir simulation. Frontiers in Applied Mathematics 1983; 1:35–106.
25. Arnold D, Casanova H, Dongarra J. Innovations of the NetSolve Grid computing system. Concurrency and Computation:

Practice and Experience 2002; 14(13–15):1457–1479.
26. Arnold D, Agrawal S, Blackford S, Dongarra J, Miller M, Sagi K, Shi Z, Vahdiyar S. Users’ guide to NetSolve V1.4.

Technical Report UT-CS-01-467, Computer Science Department, University of Tennessee, TN, July 2001.
27. The NetSolve Project Web Site. http://icl.cs.utk.edu/netsolve.
28. The Discover Computational Collaboratory. http://www.discoverportal.org.
29. Mann V, Parashar M. Engineering an Interoperable Computational Collaboratory on the Grid. Concurrency and

Computation: Practice and Experience 2002; 14(13–15):1569–1593.
30. Foster I, Kesselman C. Globus: A metacomputing infrastructure toolkit. International Journal of Supercomputing

Applications 1997; 11(2):115–128.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

1414 M. PARASHAR ET AL.

31. Parashar M, von Laszewski G, Verma S, Gawor J, Keahey K, Rehn N. A CORBA commodity Grid kit. Concurrency and
Computation: Practice and Experience 2002; 14(13–15):1057–1074.

32. Bhat V, Parashar M. A middleware substrate for integrating services on the Grid. Journal of Supercomputing (Special Issue
on Infrastructures and Applications for Cluster and Grid Computing Environments).

33. Muralidhar R, Parashar M. A distributed object infrastructure for interaction and steering. Concurrency and Computation:
Practice and Experience 2003; 15(10):957–977.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1387–1414

	1 INTRODUCTION
	2 OIL RESERVOIR SIMULATION USING IPARS
	2.1 IPARS
	2.2 Mathematical models of fluid flow in an oil reservoir
	2.3 Numerics and solution procedure
	2.4 Computational aspects of IPARS simulations

	3 THE NETSOLVE GRID COMPUTING SYSTEM
	3.1 NetSolve overview
	3.2 The NetSolve components

	4 THE DISCOVER COMPUTATIONAL COLLABORATORY
	4.1 Discover architecture
	4.1.1 Discover middleware substrate
	4.1.2 DIOS interactive object framework
	4.1.3 Discover interaction and collaboration portals

	5 ENABLING INTERACTIVE OIL RESERVOIR SIMULATIONS ON THE GRID
	5.1 Interactive and collaborative IPARS simulations using Discover
	5.1.1 Constructing interactive IPARS simulations
	5.1.1.1 Identifying computational objects.
	5.1.1.2 Creating object wrappers.
	5.1.1.3 Creating sensors and actuators.
	5.1.1.4 Creating interaction objects.
	5.1.1.5 Registering interaction objects.

	5.1.2 Collaborative interaction and steering

	5.2 Grid-based IPARS simulations using NetSolve
	5.2.1 Creating an IPARS service in NetSolve
	5.2.2 Enabling IPARS-ready NetSolve servers
	5.2.3 Accessing the IPARS service via NetSolve

	5.3 An illustrative scenario

	6 SUMMARY AND CONCLUSIONS

