Integrating Grid Services using the DISCOVER

Middleware®
Viraj N. Bhat and Manish Parashar
The Applied Software Systems Laboratory, Dept. of Electrical and Computer Engr.,
Rutgers, The State University of New Jersey, 94 Brett Road, Piscataway, NJ 08854
CAIP Technical Report-TR-268 {virajb, parashar}@caip.rutgers.edu
Abstract

Recent years have seen the development and deployment of a number of
application/domain specific problem solving environments (PSEs) and collaboratories.
These systems have evolved in parallel with the Grid and have been built on customized
architectures and specialized technologies to meet unique user requirements and support
specific user communities. While enabling these systems to share services and
capabilities has many advantages, enabling such interoperability presents many
challenges. In this paper we present the design, implementation and evaluation of the
Grid-enabled Discover middleware substrate that enables Grid infrastructure services
provided by the Globus Toolkit (security, information, resource management, storage) to
interoperate with collaboratory services provided by Discover (collaborative application
access, monitoring, and steering). Furthermore, it enables users to seamlessly access and
integrate local and remote services to synthesize customized middleware configurations

on demand.

1. Introduction

Grid computing [9] is rapidly emerging as the dominant paradigm of wide area
distributed computing. Its goal is to realize a persistent, standards-based service
infrastructure that enables coordinated sharing of autonomous and geographically
distributed hardware, software, and information resources. The emergence of such Grid
environments has made it possible to conceive a new generation of applications based on
seamless aggregations, integrations and interactions of resources, services/components

and data. These Grid applications will be built on a range of services including

! Support for this work was provided by the NSF via grants numbers ACI 9984357 (CAREERS), EIA
0103674 (NGS) and EIA-0120934 (ITR), DOE ASCI/ASAP (Caltech) via grant numbers PC295251 and
1052856.

multipurpose domain services for authentication, authorization, discovery, messaging,
data input/output, and application/domain specific services such as application
monitoring and steering, application adaptation, visualization, and collaboration.

Recent years have also seen the development and deployment of a number of
application/domain specific problem solving environments (PSEs) and collaboratories
(e.g. Upper Atmospheric Research Collaboratory (UARC) [19], Discover [16],
Astrophysics Simulation Collaboratory (ASC) [24], NPACI HotPage [26], Environmental
Molecular Sciences Collaboratory (ESML) [14], Diesel Combustion Collaboratory (DCC) [6],
and Narrative-based, Immersive, Constructionist/Collaborative Environments for children (NICE)

[23]). These systems provide specialized services to their user communities and/or
address specific issues in wide area resource sharing and Grid computing. However,
emerging Grid applications require combining these services in a seamless manner. For
example, the execution of an application on the Grid requires security services to
authenticate users and the application, information services for resource discovery,
resource management services for resource allocation, data transfer services for staging,
and scheduling services for application execution. Once the application is executing on
the Grid, interaction, steering, and collaboration services allow geographically distributed
users to collectively monitor and control the application allowing the application to be a
true research or instructional modality. Once the application terminates data storage and
clean up services come into play.

While enabling collaboratories/PSEs to share services and capabilities has many
advantages, enabling such interoperability presents many challenges. The PSEs have
evolved in parallel with the Grid computing effort and have been developed to meet

unique requirements and support specific user communities. As a result, these systems

have customized architectures and implementations, and build on specialized enabling
technologies. Furthermore, there are organizational constraints that may prevent such
interaction as it involves modifying existing software. A key challenge then, is the design
and development of a robust and scalable middleware that addresses interoperability, and
provides essential enabling services such as security and access control, discovery, and
interaction and collaboration management. Such a middleware should provide loose
coupling among systems to accommodate organizational constraints and an option to join
or leave this interaction at any time. It should define a minimal set of interfaces and
protocols to enable the PSEs to share resources, services, data and applications on the
Grid while being able to maintain their architectures and implementations of choice. A
key goal of the Global Grid Forum [13] and the Open Grid Services Architecture
(OGSA) [12] is to address these challenges by defining community standards and
protocols.

The primary objective of this paper is to investigate the design of a prototype
middleware that will enable interoperability between PSE/collaboratory and Grid services
to support the overall execution of computational applications on the Grid. In this paper
we present the design, implementation and evaluation of the Grid-enabled Discover
middleware substrate that enables Grid infrastructure services provided by the Globus
Toolkit [10] to interoperate with collaboratory services provided by the Discover
computational collaboratory, and enables users to seamlessly access and integrate local
and remote services to synthesize customized middleware configurations on demand.
This work builds on our previous work on the CORBA Community Grid (CoG) Kit [21]

and Discover middleware [16].

2. The Grid-enabled Middleware Architecture

i
@érvices requested by the Client
s — —
+ s
—
N - \ - =
collaboration tool locking steering
chat,whiteboard \ event \
X

- T collaborative access service
visualization

Grid Collaborative Portals

Collaboration Services

service % control
discovery{[,7; A > 3 —
|rec_tor authorization not)(ication service
ervices LAN or WAN

global) : — resource
updates job scheduling™ Cauthentication discovery, Grid Services

Pool of Middleware services

" Middleware

5 Computers Databases
Services available Computation Power Computation Power
Grid Resourcés for Applications

(‘D Borrowed services @ High Speed Networksj—‘)

o Selected Services i Sensors i

Figure 1: Discover Grid-enabled middleware for interoperable collaboratories.

T

|

Grid Infrastructure

The overall goal of the Grid-enabled Discover middleware substrate is to define
interfaces and mechanisms for integration and interoperation of the services provided by
Discover and the Globus Toolkit. A schematic overview of the middleware substrate is
presented in Figure 1, and consists of a network of peer hosts that export a selection of
services. The middleware essentially provides a “repository of services” view to clients
and controlled access to local and remote services. It can be thought of as consisting of
two service layers distributed across on the Grid — the Grid Service Layer and the
Collaboratory Service Layer (see Figure 1). The collaboration service layer includes
services for remote application access, collaborative application monitoring and steering,
locking, and concurrency control. This layer builds on the Discover computational
collaboratory, which consists of a peer-to-peer network of Discover interaction and

collaboration servers and defines collaboratory services across these servers.

The Grid service layer includes infrastructure services such as resource discovery,
authentication, security, directory services, resource management and scheduling. Some
services, such as the event service, span both layers. The Grid services layer builds on the
CORBACO0G kit [21]. The CORBAC0G provides access to CORBA server objects,
which are wrappers around Globus Grid services. It also provides access to the CORBA
Security Service and the CORBA Event Service. Note that all services in both service
layers can be accessed by all clients (local and remote) connected to the middleware as
long as they have appropriate access privileges — i.e. if certain services are not present at
the local host they can be borrowed from a remote host. For example in Figure 1, the
client uses locally available authentication and directory services and borrows the event
service remote a remote host. The middleware combines these local and borrowed

services and presents a virtual middleware to the client.

3. Implementation of the Grid-enabled Middleware Substrate

6o

I:E]

DiscoverCollab Sub services i i i
Grid Enabled Discover Middleware
Steering |Whiteboard/chat

Visualization | Logging Servlet Interface

» DiscoverCorbaServer

b I
- o, DiscoverCollab

y 4 DiscoverGRAM | DiscoverGASS |DiscoverGSI

DiscoverMDS DiscoverEvent

=]
[3 T
Grid Infrastructure |-- hj [a .g‘ E
] S oy

Figure 2: Conceptual architecture of the Discover Grid-enabled middleware.

An implementation overview of the Grid-enabled Discover middleware is presented in

Figure 2. It consists of collaborative client portals at the front end, computational

resources, services and applications at the backend and a network of peer hosts (servers)
providing services in the middle. As mentioned above, the middle tier provides a
repository of services view to the client and controlled access to Grid resources, services
and applications. It also enables users to synthesize customized middleware
configurations by combining local and remote services that they have access to. Clients
are as simple as possible to ensure pervasive access. A client connects to its “closest”
host and has access to all services based on its privileges and capabilities.

The prototype middleware substrate builds on CORBA/IIOP and provides peer-to-peer
connectivity between hosts within and across domains. Server/service discovery
mechanisms are built using the CORBA Naming [18] and Trader [27] services, which
allows a server to locate remote servers and to access applications/services connected to
the remote servers. Although CORBA does introduce some overheads, it provides
sophisticated services such as security, discovery and naming and enables interoperability
between servers. Furthermore, the use of IIOP can reduce client latencies when the
communications are over large geographical distances as demonstrated in [16]. Note that
XML based protocols (e.g. SOAP [25]) are popular technologies for service based
distributed systems, the choice between CORBA IDL and XML in our prototype is a
trade-off between speed and loose coupling. XML is self-describing and can provide a
greater level of interoperability. However, XML parsing is still an overhead and is slower

than CORBA IDL based object marshalling.

3.1. Discover Middleware Host (Server)
Discover interaction/collaboration servers build on commodity web servers, and

extend their functionality (using Java Servlets) to provide specialized services for real-

time application interaction and steering and for collaboration between client groups.
Clients are Java applets and communicate with the server over HTTP using a series of
HTTP GET and POST requests. Application-to-server communication either uses
standard distributed object protocols such as CORBA or a more optimized, custom
protocol over TCP sockets. An ApplicationProxy object is created for each active
application/service at the server, and is given a unique identifier. This object encapsulates
the entire context for the application. Three communication channels are established
between a server and an application for application registration and updates, client
interaction requests and application responses respectively. Core service handlers
provided by each server include the MasterHandler, CollaborationHandler, Command
Handler, Security/Authentication Handler, Grid Service Handlers (GSI, MDS, GRAM,
GASS) and the Daemon servlet that listens for application connections. Details about the

Discover Interaction and Collaboration servers can be found in [16] [17].

3.2. Discover Middleware Services

The Discover Grid enabled middleware substrate defines interfaces for three classes of
services. The first is the DiscoverCorbaServer service interface, which can be generally
termed as the service discovery service. This service inherits from the CORBA Trader
service and allows hosts to locate services on demand. The second is the DiscoverCollab
service interface, which provides uniform access to local or remote collaboratory
services. Finally, the third class consists of interfaces to the Grid infrastructure services
and provides uniform access to underlying Grid resources. This class includes the
DiscoverGSl, DiscoverMDS DiscoverGRAM, DiscoverGASS and DiscoverEvent service

interfaces. Each host that is a part of the middleware substrate instantiates CORBA

objects that implement these interfaces and are essentially wrappers around the
corresponding services. Each host implements the DiscoverCorbaServer interface and
may implement one or more of the other interfaces.

DiscoverCorbaSever: The DiscoverCorbaServer interface is implemented by each
host and exports all available services at the host to the Discover middleware through the
Trader service. Local services must register their presence with the DiscoverCorbaServer
service to be discovered. A service description typically contains its name, location (i.e.
address of its host) and its availability.

DiscoverEvent: The DiscoverEvent interface is also implemented by each host. The
DiscoverEvent service extends the CORBA Event Service [7] and enables users/services
to monitor the status of applications and resources. The service defines an event channel
at each host and clients/services can publish and subscribe to local and remote channels.

DiscoverGSl: The DiscoverGSl interface represents the Globus GSI authorization and
authentication service. It provides the basic security framework for the middleware
substrate, and is used to create and delegate secure proxy objects on remote hosts and to
enable secure access to local and remote (Collaboratory and Grid) services. DiscoverGSl
uses Grid credentials provided by the user at login to delegate proxy objects.

DiscoverMDS: The DiscoverMDS interface represents an instance of the Globus MDS
service and provides access to information about Grid resources. The DiscoverMDS
CORBA object accesses MDS information using the Java Naming and Directory
Interfaces (JNDI) libraries. DiscoverMDS uses the DiscoverEvent service to publish

updates to users and other services.

DiscoverGRAM: The DiscoverGRAM service represents the Globus GRAM service
and allows clients to submit jobs on local and remote hosts. DiscoverGRAM objects
works in coordination with the DiscoverGSI service for authorization and authentication
with Grid resources. It also uses the DiscoverEvent service to receive updates regarding
the status of jobs.

DiscoverGASS: The DiscoverGASS interface represents the Globus GASS service and
enables users/services to access remote data and transfer data, application logs and
applications executables. This enables applications to pre-stage data on remote machines,
cache data, and log remote application outputs, and stage executables on remote
computers. The DiscoverGASS service also allows clients to securely transfer files
between source and destination pairs using the GridFTP [1] protocol, which also uses the
DiscoverGSl service.

DiscoverCollab: The DiscoverCollab interface represents the collaboratory services
provided by a host. This includes services for monitoring application status, application

steering, locking and concurrency control, collaboration and visualization.

3.3. The Discover Portal

The Discover portal consists of a virtual desktop with local and shared areas. The
shared areas implement a replicated shared workspace and enable collaboration among
dynamically formed user groups. Locking mechanisms are used to maintain consistency.
The base portal is presented to the user after authentication and access verification using
Grid credentials. This provides the user with a list of available Grid and Collaboratory
services that the user is authorized to access and allows the user to select the set of local

or remote services to be used during the session. The application interaction desktop

consists of (1) a list of interaction objects and their exported interaction interfaces (views
and/or commands), (2) an information pane that displays global updates (current time
step of a simulation) from the application, and (3) a status bar that displays the current
mode of the application (computing, interacting) and the status of issued command/view
requests. The list of interaction objects is once again customized to match the client's
access privileges. Chat and whiteboard tools can be launched from the desktop to support
collaboration. View requests generate separate (possibly shared) panes using the

corresponding view plug-in. A snapshot of the Discover portal is shown in Appendix A.

4. Operation of the Discover Grid enabled Middleware

running application

Step 8 :Remote Clients log on and collaborates with the D

4 :Client queries resources in the
globus domain

:Client submites job on
cifed resource

the

DiscoverCorbaServer P _D'S_CO_VELCO_rbiSE'VEr_ — __}
/ Fr———————— = — — — — — — AN
DiscoverCollab |_ _____ DiscoverCollab 1\
DiscoverEvent ,I DiscoverGSl | |
— —_— —_ pa— pa—
R /
J < DiscoverGRAM || DiscoverGASS || DiscoverMDS lo
N N N ~ Step O : Registey
~ N rvices with tl
~ g Trader
|:| Actual Services ~ ~ ~ o Skep 6 :Application is deployed
—_— \\ Trader r—-————— —"—"—————
| | Borrowed Services - | |
e Client to Middleware Interaction =~ |
Step 7 Steera'nd~mom.to.r_ 4 —

job through the Discover |
Collaboration Service

—_ > Middleware to Client Interaction

Figure 3: Operation of the Discover Grid-enabled middleware.

This overall operation of the Grid enabled middleware is illustrated in Figure 3. Each
host joins the middleware and registers its services with the CORBA trader service (via
the local DiscoverCorbaSever service). Each service is uniquely identified at the trader
by its name and the machine address of its host. A client logging on to the middleware

through the Discover portal first authenticates with the DiscoverCollab service. The

client is then presented with a list of all services and applications, local and remote, to
which the client has access privileges. The client can now interactively compose and
configure its middleware stack using these services, and can use this customized stack
and associated local and remote Grid as well as Collaboratory services to acquire
resources, configure and launch applications, connect to, monitor and steer the
applications, terminate applications and collaborate with other users. Note the client has
to perform a second level of authentication with the DiscoverGSl service before
accessing available resources, services or applications. The credentials presented by the
client during this authentication are used to delegate the required client proxies. Through
these proxies, clients can discover local and remote resources using the DiscoverMDS
service, allocate resources and run applications using DiscoverGRAM service, monitor
the status of applications and resources using the DiscoverEvent service and perform
data/file transfer using the DiscoverGASS service. DiscoverGRAM also allows authorized
users to terminate an application. The DiscoverCollab services enable the client to
monitor, interact with and steer (local and remote) applications and to collaborate with
other users connected to the middleware. Key operations are briefly described below.
Security/Authentication: The Discover security model is based on the Globus GSI
protocol and builds on the CORBA Security Service. The GSI delegation model is used
to create and delegate an intermediary object (the CORBA GSI Server Object) between
the client and the service. The process consists of three steps: (1) Client and server
objects mutually authenticate using the CORBA Security Service. (2) The client

delegates the DiscoverGSl server object to create a proxy object that is authorized to

communicate with other Grid Services. (3) The client can use this secure proxy object to
securely invoke the services.

Each Discover server supports a two-level access control for collaboratory services:
the first level manages access to the server while the second level manages access to a
particular application. Applications are required to be registered with a server and to
provide a list of users and their access privileges (e.g. read-only, read-write). This
information is used to create customized access control lists.

Discovery of servers, applications and resources: Peer Discover servers locate each
other using the CORBA trader services. The CORBA trader service maintains server
references as service-offer pairs. All Discover servers are identified by the service-id
“Discover”. The service offer contains the CORBA object reference and a list of
properties defined as name-value pairs. Thus the object can be identified based on the
service it provides or its properties.

Applications are located using their globally unique identifiers, which are dynamically
assigned by the Discover server and are a combination of the server's IP address and a
local count at the server. Resources are discovered using the Globus MDS Grid
information service, which is accessed via the MDSHandler servlet and the DiscoverMDS
service interface.

Accessing Globus Grid services: Job submission and remote data access: Discover
middleware allows users to launch applications on remote resources using the
DiscoverGRAM service. Clients invoke the GRAMHandler servlet to submit jobs. The
DiscoverGRAM service submits jobs to the Globus gatekeeper after authenticating using

the DiscoverGSl service. The user can then monitor jobs using the DiscoverEvent service.

Similarly, clients can store and access remote data using the DiscoverGASS service. The
GASSHandler servlet invokes the delegated DiscoverGASS service to transfer files using
a client specified protocol.

Distributed collaboration: The Discover collaboratory enables multiple clients to
collaboratively interact with and steer local and remote applications. The Collaboration
Handler servlet at each middleware host handles the collaboration on its side, while a
dedicated polling thread is used on the client side. All clients connected to an application
instance form a collaboration group by default. However, as clients may connect to an
application through a remote host, collaboration groups can span multiple hosts. In this
case, the DiscoverCollab objects at the host polls other hosts for updates and responses.

The peer-to-peer middleware architecture offers two significant advantages for
collaboration. First, it reduces the network traffic generated. This is because, instead of
sending individual collaboration messages to all the clients connected through a remote
middleware host, only one message is sent to that remote host, which then updates its
locally connected clients. Since clients always interact through the host closest to them
and the broadcast messages for collaboration are generated at this host, these messages
don't have to travel large distances across the network. This reduces overall network
traffic as well as client latencies, especially when the hosts are geographically far away. It
also leads to better scalability in terms of the number of clients that can participate in a
collaboration session without overloading a host, as the load now spans multiple hosts.

Distributed locking and logging for interactive steering and collaboration:
Session management and concurrency control is based on capabilities granted by the

middleware. A simple locking mechanism is used to ensure that the application remains

in a consistent state during collaborative interactions. This ensures that only one client
“drives” (issues commands) to the application at any time. In the distributed middleware
case, locking information is only maintained at the application's middleware host i.e. the
Discover middleware to which the application connects directly. The session archival
handler maintains two types of logs. The first log maintains all interactions between a
client and an application. For remote applications, the client logs are maintained at the
middleware host where the clients are connected. The second log maintains all requests,
responses, and status messages for each application throughout its execution. This log is
maintained at the application’s middleware host (the middleware to which the application

is directly connected).

users grid credentials

m Grid domain
] 3 . :
o Logging Service @83

Discower GSI1 DizzowerGR AM

SecllOP

grid enabled middleware

grid enabled middleware

Figure 4: Delegation model across services.

As noted above the Discover Grid-enabled middleware enables local and remote
services to be combined in an ad hoc way and collectively used to get achieved desired
behaviors. For example, consider the scenario as illustrated in Figure 4. In this example, a
client copies log files generated by the application during a run using a remote
DiscoverGASS service. The client logs on to the middleware (step 1) and access the
logging collaboratory service (part of DiscoverCollab). The logging service uses the
client’s credentials and the DiscoverGSI service (step 2) to create and delegate a proxy

logging service (step 3). This proxy logging services interacts with the DiscoverGASS

service to transfer the log files to the local host (step 4). Note that these interactions are

over a secure 11OP channel.

5. Experimental Evaluation

Linux
= 350 Mhz Pentium Il

ajax.ices.utexas.edu

[DiscoverCorbaServer]

[DiscoverCollab |

|DiscoverGRAM || DiscoverGASS || DiscoverGS| ” DiscoverMDS || DiscoverEvent |

Red Hat Linux 8.0
Globus 2.0 Grid Enabled DISCOVER Middleware Windows NT
1.7 GHz Pentium 4 == 800 Mhz Pentium Ill ==
|—————- gridirutgersedu __ _tassl-pc-2.rutgers.edu__

Servlets interface to Clients

—_——_— e —_ —T—

[DiscoverCorbaServer | Ethernet [DiscoverCorbaserver]
[DiscoverCollab | [DiscoverCollab |

|D|scoverGRAM ” DiscoverGASS || DiscoverGSI || DiscoverMDS || DiscoverEvent |

=
=
(i
pumi

Globus Toolkit2.2 |

[Globus Toolkit 2.0 | Pl
discover.rutgers.edu

Figure 5: Experimental setup of the Grid-enabled Discover middleware.

The Grid-enabled Discover middleware is presently deployed at TASSL, Rutgers
University and at the Center for Subsurface Modeling (CSM) and Institute for
Geophysics (IG), University of Texas at Austin, and is used to enable multiple
applications on the Grid from varied disciplines including reservoir
engineering/subsurface modeling, seismic modeling, computational fluid dynamics,
numerical relativity and astrophysics. We are currently expanding the network to include
a deployment at University of Maryland and the Center for Advanced Computational
Research (CARC), California Institute of Technology. The middleware implementation
builds on commodity technologies including the Apache Tomcat Servlet engine and the
JacORB [3] an open source implementation of the CORBA ORB.

This section presents an experimental evaluation of the Discover middleware. The
overall setup for these experiments is show in Figure 5. It consisted of deployments at

gridl.rutgers.edu, discover.rutgers.edu and tassl-pc-2.rutgers.edu at Rutgers University

and ajax.ices.utexas.edu at University of Texas. Deployments at gridl.rutgers.edu and
ajax.ices.utexas.edu had complete installations (Grid and Collaboratory services) while
discover.rutgers.edu had only Grid services and tassl-pc-2.rutgers.edu had only
Collaboratory services. We used the transport equation application kernel with adaptive
mesh refinement (tportamr) for our experiments. The application was run on Beowulf
clusters at Rutgers. The evaluations consisted of evaluating the latencies in accessing

local and remote services over local and wide area networks and are presented below.

2000 2000

I P(Present) I P(Present)
B(Borrowed)-LAN B(Borrowed)-LAN
B(Borrowed)-WAN Il B(Borrowed)-WAN

1500 1500 -
1000 -

1000
500 | 500 4
0 my : : 0 Ll
a b

Total Time a b Total Time
DiscoverMDS Steps:Resource on gridl.rutgers.edu DiscoverMDS Steps:Resource on discover.rutgers.edu

Time in msec
Time in msec

Figure 6a, 6b: DiscoverMDS service discovers resources on gridl.rutgers.edu (6a) and
discover.rutgers.edu (6b). a represents the time to locate the DiscoverMDS service and b

represents the time to query the resources on the selected host.

Evaluation of the DiscoverMDS service: The evaluation of the DiscoverMDS service is
divided into three cases. In the first case the DiscoverMDS service is locally present (case
P). In the second case the DiscoverMDS service is borrowed from a remote host over
LAN (case B-LAN). In the third case the DiscoverMDS service is borrowed from a
remote host over WAN (case B-WAN). In all three cases clients used the DiscoverMDS
service to discover resources at Rutgers. In each case, the experiment consists of two
steps: (a) discovering the DiscoverMDS service using the CORBA Trader service and (b)

invoking the service to discover resources. The times for steps (a) and (b) for discovering

resources on gridl.rutgers.edu and discover.rutgers.edu are plotted in Figure 6a and 6b
respectively. As seen in the plots, the time for discovering the service (step a) is small
compared to the time for querying for resources (step b). This is primarily because of the
overheads of querying MDS and packing, transporting and unpacking the large amount of
returned resource information. Note that the average time for querying resources on
discover.rutgers.edu is larger than that for gridl.rutgers.edu as discover.rutgers.edu is a

16 node cluster while grid1.rutgers.edu is a single processor machine.

a | Resolving services: DiscoverGRAM

14000 - mEEE P(Present)
B(Borrowed)-LAN b | Delegation: DiscoverGSI

I B(Borrowed)-WAN

12000 c Event channel creation: DiscoverEvent

10000 |] d | Job start time on grid.1.rutgers.edu

e | Total time to start job —i.e. a+b+c+d
8000

f Resolving services: DiscoverGRAM

6000 | g | Delegation with the DiscoverGSl

4000 h | Eventchannel creation: DiscoverEvent

2000 | | ‘ ‘ 1 i Job cancellation time: DiscoverGRAM
j Total time to cancel job - i.e. f+g+h+i
ol —=sil I‘I aln I ‘ a il .. i ‘ ! ! k
a b c d e f g h i j
DiscoverGRAM steps:Resource on gridl.rutgers.edu

Figure 7: DiscoverGRAM service launches the tportamr application using steps a, b, ¢, and d,

and terminates the tportamr application using steps f, g, h, i on gridl.rutgers.edu.

Evaluation of the DiscoverGRAM service: The evaluation of DiscoverGRAM
consisted of using the service to launch and terminate the tportamr application on
gridl.rutgers.edu. Application deployment consisted of the following steps: (a)
discovering the DiscoverGRAM service, (b) using DiscoverGSI to delegate a service
proxy, (c) create an event channel for application monitoring, and (d) launch the
application on the selected host i.e. gridl.rutgers.edu. Application termination similarly
consisted of the following steps: (f) discovering the DiscoverGRAM service, (g) using

DiscoverGSl to delegate a service proxy, (h) creating an event channel for application

monitoring, and (i) terminate the application selected. Note that the resource for
launching the application and the application to be terminated are discovered and selected
using the DiscoverMDS service. The times required for each step are plotted in Figure 7.

As in the previous experiment, we consider three cases: in case P, the required
services are local, in case B-LAN, the required services are borrowed over LAN, and in
case B-WAN, the required services are borrowed over WAN. Note that the times for
lauching and terminating the application are quite comparable for the three cases. The
large termination time is due to the cleanup performed by GRAM.

Evaluation of the DiscoverGASS service: The evaluation of the DiscoverGASS

service consisted of using the service to transfer =°

B P(Present)

N
13

files of different sizes. We measured the time

g
=}

g
o
T

required to transfer files between

g
o
T

log (Tranfer time in msec)

gridl.rutgers.edu and discover.rutgers.edu. In

e
13

this experiment we considered the case P where

o
o

8

2 4 6
log (File size in bytes):Resouce on grid1l.rutgers.edu

the DiscoverGASS service was locally present. Figure 8: Log-Log plot of
transfer times for various files

sizes using DiscoverGASS
service (P case).

The measured transfer time and the file sizes in
bytes are plotted in Figure 8 using a log-log scale. The file sizes and the transfer times
varied exponentially and ranged from 2 bytes to approximately 10 MB and the
corresponding transfers times varied from 9 msec. to 637 msec. respectively. It can be
seen that the DiscoverGASS performed well for small and medium file sizes (9 msec. for
~2 bytes and 47 msec. for ~1 MB). However the performance rapidly deteriorated (637

msec.) as file sizes approached 10 MB. Note that the typical size of a log files generated

during the DiscoverGRAM experiment was around 100 KB. We are currently evaluating
cases where the service is borrowed over LAN (B-LAN) and over WAN (B-WAN).
Evaluation of the DiscoverCollab service: The evaluation for Collaboratory services
(access latency over local area and wide area networks, effect of multiple clients on
access latencies and server memory overheads due to local and remote applications) was
presented in [16]. This evaluation consisted of measuring scalability, response times and
latencies when multiple clients collaboratively interact with an application. These
measurements were conducted for cases where the DiscoverCollab service is local,
borrowed over a LAN and borrowed over a WAN. The results showed that although
response times were larger when using borrowed services, the overhead was constant for
large response sizes. Furthermore, when using the WAN, the results showed the benefits
of the hybrid P2P design and the use of I1OP. The results also demonstrated that the
middleware scaled to over 20 (distributed) collaborating clients simultaneously

interacting with an application.

6. Conclusions

This paper presented the design, implementation, operation and evaluation of the
Discover Grid-enabled middleware substrate. The middleware substrate enables Grid
infrastructure services provided by the Globus Toolkit (security, information, resource
management, storage) to interoperate with collaboratory services provided by Discover
(collaborative application access, monitoring, and steering). Furthermore, it enables users
to seamlessly access and integrates local and remote services to synthesize customized
middleware configurations on demand. Clients can use the Grid as well as Collaboratory

services integrated by the middleware to acquire resources, configure and launch

applications, connect to monitor and steer the applications, terminate applications and

collaborate with other users. A sample application scenario, oil reservoir optimization on

the Grid, enabled by the middleware substrate was presented. An experimental evaluation

of access latencies for local and remote (over LAN and WAN) Grid services using the

middleware substrate was presented. These results show that overheads for using remote

services are acceptable.

7. References

[1]

[2]

[3]

[4]

W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming and S. Tuecke.
“GridFTP Protocol Specification,” GGF GridFTP Working Group Document,
September 2002.

J. Bester, I. Foster, C. Kesselman, J. Tedesco and S. Tuecke. “GASS: A Data
Movement and Access Service for Wide Area Computing Systems,” In Proceedings
Sixth Workshop on 1/0O in Parallel and Distributed Systems pages 365-375 Atlanta
GA, May 5, 1999.

G. Brose. “JacORB: Implementation and Design of a Java ORB,” In Proceedings. of
DAIS'97, IFIP WG 6.1 International Working Conference on Distributed
Applications and Interoperable Systems Chapman & Hall, pages 143-154
September 30-October 2, Cottbus, Germany, 1997.

K. Czajkowski, 1. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith and S.
Tuecke. “A Resource Management Architecture for Metacomputing Systems,” In
Proceedings IPPS/SPDP '98 Workshop on Job Scheduling Strategies for Parallel

Processing, pages 62-82, Orlando FL, 1998.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman. “Grid Information
Services for Distributed Resource Sharing,” In Proceedings of the Tenth IEEE
International Symposium on High-Performance Distributed Computing (HPDC-10),
IEEE Press, San Francisco CA, August 2001.

D. Diachin, L. Freitag, D. Heath, J. Herzog, W. Michels, and P. Plassmann.
“Remote Engineering Tools for the Design of Pollution Control Systems for
Commercial Boilers,” International Journal of Supercomputer Applications, 10(2)

pages 208-218, 1996.

Event Service Specification, Version 1.1, http://www.omg.org/docs/formal/01-03-
01.pdf.
S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith and S. Tuecke.

“A Directory Service for Configuring High-Performance Distributed
Computations,” In Proceedings of 6th IEEE Symposium on High-Performance
Distributed Computing (HPDC-6), pages. 365-375, Portland OR, 1997.

I. Foster and C. Kesselman. Computational Grids, Chapter 2 of “The Grid:
Blueprint for a New Computing Infrastructure,” Morgan-Kaufman, CA 1999.

I. Foster and C. Kesselman. “Globus: A Metacomputing Infrastructure Toolkit,”
International Journal of Supercomputer Applications, 11(2) pages 115-128, 1997.

I. Foster and C. Kesselman, G. Tsudik and S. Tuecke. “A Security Architecture for
Computational Grids,” In Proceedings of 5th ACM Conference on Computer and

Communications Security Conference, pages. 83-92, San Francisco CA, 1998.

http://www.omg.org/docs/formal/01-03-01.pdf
http://www.omg.org/docs/formal/01-03-01.pdf

[12]

[13]

[14]

[15]

[16]

[17]

[18]

I. Foster, C. Kesselman, J. Nick and S. Tuecke. “The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration,” In
Proceedings of Open Grid Service Infrastructure WG, Global Grid Forum, 2002.

Global Grid Forum, http://www.gridforum.org/.

R. T. Kouzes, J. D. Myers and W. A. Wulf. “Collaboratories: Doing Science on the
Internet,” In Proceedings of IEEE Computer August 1996 IEEE Fifth Workshops on
Enabling Technology: Infrastructure for Collaborative Enterprises (WET ICE '96),
pages 40-46 Stanford CA, June 19-21 1996,

G. von Laszewski, | Foster, J Gawor and P Lane. “A Java Commodity Grid Kit,”
Concurrency and Computation: Practice and Experience, pages 643-662, Volume
13, Issue 8-9, 2001.

V. Mann and M. Parashar. “Engineering an Interoperable Computational
Collaboratory on the Grid,” Concurrency and Computation: Practice and
Experience, Special Issue on Grid Computing Environments, John Wiley and Sons,
Vol. 14, Issue 13-15, pages. 1569-1593, 2002.

R. Muralidhar and M. Parashar. “An Interactive Object Substrate for Computational
Steering of Distributed Simulations,” In Proceedings of the Ninth IEEE
International Symposium on High-Performance Distributed Computing (HPDC-9),
IEEE Computer Society Press, pages. 304-305, Pittsburgh PA, August 2000.”

Naming Service Specification, Version 1.2, http://www.omg.org/docs/formal/02-09-

02.pdf.

http://www.gridforum.org/
http://www.omg.org/docs/formal/02-09-02.pdf
http://www.omg.org/docs/formal/02-09-02.pdf

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

G. Olson, D. E. Atkins, R. Clauer, T. Finholt, F. Jahanian, T.L. Killeen, A. Prakash,
and T. Weymouth. “The Upper Atmospheric Research Collaboratory,” ACM
Interactions, Vol. 3, pages. 48-55, May-June 1998.

ORB Interoperability Architecture, http://www.omg.org/docs/formal/02-06-17.pdf.

M. Parashar, G. von Laszewski, S. Verma, J. Gawor, K. Keahey, and N. Rehn. “A
CORBA Commodity Grid Kit,” Concurrency and Computation: Practice and
Experience, Special Issue on Grid Computing Environments, John Wiley and Sons,

Vol. 14, Issue 13-15, pages. 1057-1074, 2002.

Python Globus (pyGlobus), http://www-itg.Ibl.gov/gtg/projects/pyGlobus/.

M. Roussos, A. Johnson, J Leigh, C. Barnes, C. Vasilakis, and T. Moher. “The
NICE project: Narrative, Immersive, Constructionist/Collaborative Environments
for Learning in Virtual Reality,” In Proceedings of ED-MEDIA/ED-TELECOM 97,
pages 917-922, Calgary, Canada, June 1997

M. Russell, G. Allen, G. Daues, I. Foster, T. Goodale, E. Seidel, J. Novotny, J.
Shalf, W. Suen, and G von Laszewski. “The Astrophysics Simulation Simulation
Collaboratory A Science Portal Enabling Community Software Development,” In
Proceedings of Tenth IEEE International Symposium on High Performance
Distributed Computing (HPDC-10), pages 207-215, San Francisco CA, August
2001.

Simple Object Access Protocol (SOAP), 1.1 http://www.w3.0rg/TR/SOAP/.

M. Thomas, S. Mock and J. Boisseau. “Development of the Web toolkits for

Computational Science Portals: The NPACI HotPage,” In Proceedings of 9" IEEE

http://www.omg.org/docs/formal/02-06-17.pdf
http://www-itg.lbl.gov/gtg/projects/pyGlobus/
http://www.w3.org/TR/SOAP/

International Symposium on the High Performance Distributed Computing (HPDC-
9), Pages 308-309, Pittsburgh PA, Aug 14, 2000.
[27] Trading Object Service Specification, Version 1.0,

http://www.omg.org/docs/formal/00-06-27.pdf.

Appendix A

[|[orscovercram londl.nagers.edd] 3
[Discoverssi |[gndl nagers.edd[
DiscoverMDS |[gndl.nagers.edi]

aoh]wus PO
Qoo raspen sopscton. (T
[appoerails P Crigpropertios === (SN [—
D sopsatus AL
=530y =33

[} amrraramaters emin = 0 xmax = 1

oa Ctw ;""" ;:}1’:;‘0‘. 1IJ 015625
? Siools i i

2 I Views
[GiobatgoundingBoxtusc
[0} GridHierare nPlo
[retinementinformarion e EE—

& [Commands ; H | « MdsMemoryVm sizeMB = 1027
& S pipomye | LoginMethod | » Mds-Cpuvendor = Genuinelntel

o views = Mds-Netname =ethd lo

[commands : Ficee | | » Mds~alidio = 200304172342522

e] [Ly o MyTmgld Mds-Cpu-version = 15.0.10
% [(Do|Sriafunction2diu I Password: |swewwnne | I Mds-Cpufeatures = fpu vine de

« Mds-Cpu-speedMHz = 1694
» Mds-Memory-Ram-Total-freeMB =

471
» MdsFsfreeMB = 377 60199 64
« Mds-Cpu-FreeSminX100 = 050

AMR Properties

Absolute Maxley = 3
Current MusLev = 3
Fomobemiod e £ ABE

L

o S views pSe 1SC MST pae mce X8 apic sep
= Commancs | Signin mirr pge mea cmov par pse3s cilush
[setsicenvaseicousie) TR dis acp MMM 5 55 bt tm

[sersicervalue(double)

3. i 5 :
SR ' N | iy | DemoT rarsport2dAME Name of the Application 1o be stated by GRAM

l 7 This spectiies the host name which the Application
o-nane=local,o=grid | e || G ANger. £l will Comect to.

| Latmeh the Application I

Steps | Sequence of Events

Client logs in using “Grid Credentials”

Client selects the desired action

Client selects and configures local/remote Grid and Collaboratory services
Client queries MDS services for resources

Client is presented with details of a selected resource

Client launches applications on selected resource

Client presented with an option to interact with an executing application
Client presented with a collaborative interaction and steering interface

(N[OOI (WN|F-

Figure 9: A snapshot of the Discover portal.

http://www.omg.org/docs/formal/00-06-27.pdf

	Introduction
	The Grid-enabled Middleware Architecture
	Implementation of the Grid-enabled Middleware Substrate
	Operation of the Discover Grid enabled Middleware
	Experimental Evaluation
	Conclusions
	References
	Appendix A

