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Abstract 
Recent years have seen the development and deployment of a number of 

application/domain specific problem solving environments (PSEs) and collaboratories. 

These systems have evolved in parallel with the Grid and have been built on customized 

architectures and specialized technologies to meet unique user requirements and support 

specific user communities. While enabling these systems to share services and 

capabilities has many advantages, enabling such interoperability presents many 

challenges. In this paper we present the design, implementation and evaluation of the 

Grid-enabled Discover middleware substrate that enables Grid infrastructure services 

provided by the Globus Toolkit (security, information, resource management, storage) to 

interoperate with collaboratory services provided by Discover (collaborative application 

access, monitoring, and steering). Furthermore, it enables users to seamlessly access and 

integrate local and remote services to synthesize customized middleware configurations 

on demand. 

1. Introduction 

Grid computing [9] is rapidly emerging as the dominant paradigm of wide area 

distributed computing. Its goal is to realize a persistent, standards-based service 

infrastructure that enables coordinated sharing of autonomous and geographically 

distributed hardware, software, and information resources. The emergence of such Grid 

environments has made it possible to conceive a new generation of applications based on 

seamless aggregations, integrations and interactions of resources, services/components 

and data. These Grid applications will be built on a range of services including 
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multipurpose domain services for authentication, authorization, discovery, messaging, 

data input/output, and application/domain specific services such as application 

monitoring and steering, application adaptation, visualization, and collaboration. 

Recent years have also seen the development and deployment of a number of 

application/domain specific problem solving environments (PSEs) and collaboratories 

(e.g. Upper Atmospheric Research Collaboratory (UARC) [19], Discover [16], 

Astrophysics Simulation Collaboratory (ASC) [24], NPACI HotPage [26], Environmental 

Molecular Sciences Collaboratory (ESML) [14], Diesel Combustion Collaboratory (DCC) [6], 

and Narrative-based, Immersive, Constructionist/Collaborative Environments for children (NICE) 

[23]). These systems provide specialized services to their user communities and/or 

address specific issues in wide area resource sharing and Grid computing. However, 

emerging Grid applications require combining these services in a seamless manner. For 

example, the execution of an application on the Grid requires security services to 

authenticate users and the application, information services for resource discovery, 

resource management services for resource allocation, data transfer services for staging, 

and scheduling services for application execution. Once the application is executing on 

the Grid, interaction, steering, and collaboration services allow geographically distributed 

users to collectively monitor and control the application allowing the application to be a 

true research or instructional modality. Once the application terminates data storage and 

clean up services come into play. 

While enabling collaboratories/PSEs to share services and capabilities has many 

advantages, enabling such interoperability presents many challenges. The PSEs have 

evolved in parallel with the Grid computing effort and have been developed to meet 

unique requirements and support specific user communities. As a result, these systems 



have customized architectures and implementations, and build on specialized enabling 

technologies. Furthermore, there are organizational constraints that may prevent such 

interaction as it involves modifying existing software. A key challenge then, is the design 

and development of a robust and scalable middleware that addresses interoperability, and 

provides essential enabling services such as security and access control, discovery, and 

interaction and collaboration management. Such a middleware should provide loose 

coupling among systems to accommodate organizational constraints and an option to join 

or leave this interaction at any time. It should define a minimal set of interfaces and 

protocols to enable the PSEs to share resources, services, data and applications on the 

Grid while being able to maintain their architectures and implementations of choice. A 

key goal of the Global Grid Forum [13] and the Open Grid Services Architecture 

(OGSA) [12] is to address these challenges by defining community standards and 

protocols. 

The primary objective of this paper is to investigate the design of a prototype 

middleware that will enable interoperability between PSE/collaboratory and Grid services 

to support the overall execution of computational applications on the Grid. In this paper 

we present the design, implementation and evaluation of the Grid-enabled Discover 

middleware substrate that enables Grid infrastructure services provided by the Globus 

Toolkit [10] to interoperate with collaboratory services provided by the Discover 

computational collaboratory, and enables users to seamlessly access and integrate local 

and remote services to synthesize customized middleware configurations on demand. 

This work builds on our previous work on the CORBA Community Grid (CoG) Kit [21] 

and Discover middleware [16].  



2. The Grid-enabled Middleware Architecture 
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Figure 1: Discover Grid-enabled middleware for interoperable collaboratories. 

The overall goal of the Grid-enabled Discover middleware substrate is to define 

interfaces and mechanisms for integration and interoperation of the services provided by 

Discover and the Globus Toolkit. A schematic overview of the middleware substrate is 

presented in Figure 1, and consists of a network of peer hosts that export a selection of 

services. The middleware essentially provides a “repository of services” view to clients 

and controlled access to local and remote services. It can be thought of as consisting of 

two service layers distributed across on the Grid – the Grid Service Layer and the 

Collaboratory Service Layer (see Figure 1). The collaboration service layer includes 

services for remote application access, collaborative application monitoring and steering, 

locking, and concurrency control. This layer builds on the Discover computational 

collaboratory, which consists of a peer-to-peer network of Discover interaction and 

collaboration servers and defines collaboratory services across these servers.  
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The Grid service layer includes infrastructure services such as resource discovery, 

authentication, security, directory services, resource management and scheduling. Some 

services, such as the event service, span both layers. The Grid services layer builds on the 

CORBACoG kit [21]. The CORBACoG provides access to CORBA server objects, 

which are wrappers around Globus Grid services. It also provides access to the CORBA 

Security Service and the CORBA Event Service. Note that all services in both service 

layers can be accessed by all clients (local and remote) connected to the middleware as 

long as they have appropriate access privileges – i.e. if certain services are not present at 

the local host they can be borrowed from a remote host. For example in Figure 1, the 

client uses locally available authentication and directory services and borrows the event 

service remote a remote host. The middleware combines these local and borrowed 

services and presents a virtual middleware to the client.  

3. Implementation of the Grid-enabled Middleware Substrate 
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Figure 2: Conceptual architecture of the Discover Grid-ena

plementation overview of the Grid-enabled Discover middleware is present
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ice discovery 

me

s build on commodity web servers, and 

extend their functionality (using Java Servlets) to provide specialized services for real-

ources, services and applications at the backend and a network of peer hosts (servers) 

providing services in the middle. As mentioned above, the middle tier provides a 

repository of services view to the client and controlled access to Grid resources, services 

and applications. It also enables users to synthesize customized middleware 

configurations by combining local and remote services that they have access to. Clients 

are as simple as possible to ensure pervasive access. A client connects to its “closest” 

host and has access to all services based on its privileges and capabilities.  

The prototype middleware substrate builds on CORBA/IIOP and provides peer-to-peer 

connectivity between hosts within and across domains. Server/serv

chanisms are built using the CORBA Naming [18] and Trader [27] services, which 

allows a server to locate remote servers and to access applications/services connected to 

the remote servers. Although CORBA does introduce some overheads, it provides 

sophisticated services such as security, discovery and naming and enables interoperability 

between servers. Furthermore, the use of IIOP can reduce client latencies when the 

communications are over large geographical distances as demonstrated in [16]. Note that 

XML based protocols (e.g. SOAP [25]) are popular technologies for service based 

distributed systems, the choice between CORBA IDL and XML in our prototype is a 

trade-off between speed and loose coupling. XML is self-describing and can provide a 

greater level of interoperability. However, XML parsing is still an overhead and is slower 

than CORBA IDL based object marshalling. 

3.1. Discover Middleware Host (Server) 

Discover interaction/collaboration server



time plication interaction and steering anap d for collaboration between client groups. 
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d e. This service inherits from the CORBA Trader 

ser

ients are Java applets and communicate with the server over HTTP using a series of 

HTTP GET and POST requests. Application-to-server communication either uses 

standard distributed object protocols such as CORBA or a more optimized, custom 

protocol over TCP sockets. An ApplicationProxy object is created for each active 

application/service at the server, and is given a unique identifier. This object encapsulates 

the entire context for the application. Three communication channels are established 

between a server and an application for application registration and updates, client 

interaction requests and application responses respectively. Core service handlers 

provided by each server include the MasterHandler, CollaborationHandler, Command 

Handler, Security/Authentication Handler, Grid Service Handlers (GSI, MDS, GRAM, 

GASS) and the Daemon servlet that listens for application connections. Details about the 

Discover Interaction and Collaboration servers can be found in [16] [17]. 

3.2. Discover Middleware Services 

The Discover Grid enabled middleware substrate defines interfaces for three classes of 

services. The first is the DiscoverCorbaServer service interface, which c

terme  as the service discovery servic

vice and allows hosts to locate services on demand. The second is the DiscoverCollab 

service interface, which provides uniform access to local or remote collaboratory 

services. Finally, the third class consists of interfaces to the Grid infrastructure services 

and provides uniform access to underlying Grid resources. This class includes the 

DiscoverGSI, DiscoverMDS DiscoverGRAM, DiscoverGASS and DiscoverEvent service 

interfaces. Each host that is a part of the middleware substrate instantiates CORBA 



objects that implement these interfaces and are essentially wrappers around the 

corresponding services. Each host implements the DiscoverCorbaServer interface and 

may implement one or more of the other interfaces. 

DiscoverCorbaSever: The DiscoverCorbaServer interface is implemented by each 

host and exports all available services at the host to the Discover middleware through the 

Trader service. Local services must register their presence with the DiscoverCorbaServer 

ser

 resources. The service defines an event channel 

at 

 

en

 Directory 
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vice to be discovered. A service description typically contains its name, location (i.e. 

address of its host) and its availability.  

DiscoverEvent: The DiscoverEvent interface is also implemented by each host. The 

DiscoverEvent service extends the CORBA Event Service [7] and enables users/services 

to monitor the status of applications and

each host and clients/services can publish and subscribe to local and remote channels.  

DiscoverGSI: The DiscoverGSI interface represents the Globus GSI authorization and 

authentication service. It provides the basic security framework for the middleware 

substrate, and is used to create and delegate secure proxy objects on remote hosts and to

able secure access to local and remote (Collaboratory and Grid) services. DiscoverGSI 

uses Grid credentials provided by the user at login to delegate proxy objects.  

DiscoverMDS: The DiscoverMDS interface represents an instance of the Globus MDS 

service and provides access to information about Grid resources. The DiscoverMDS 

CORBA object accesses MDS information using the Java Naming and

erfaces (JNDI) libraries. DiscoverMDS uses the DiscoverEvent service to publish 

updates to users and other services. 



DiscoverGRAM: The DiscoverGRAM service represents the Globus GRAM service 

and allows clients to submit jobs on local and remote hosts. DiscoverGRAM objects 

wo

ces to access remote data and transfer data, application logs and 

ap

is includes services for monitoring application status, application 

ste

ed areas. The 

licated shared workspace and enable collaboration among 

dy

rks in coordination with the DiscoverGSI service for authorization and authentication 

with Grid resources. It also uses the DiscoverEvent service to receive updates regarding 

the status of jobs.  

DiscoverGASS: The DiscoverGASS interface represents the Globus GASS service and 

enables users/servi

plications executables. This enables applications to pre-stage data on remote machines, 

cache data, and log remote application outputs, and stage executables on remote 

computers. The DiscoverGASS service also allows clients to securely transfer files 

between source and destination pairs using the GridFTP [1] protocol, which also uses the 

DiscoverGSI service. 

DiscoverCollab: The DiscoverCollab interface represents the collaboratory services 

provided by a host. Th

ering, locking and concurrency control, collaboration and visualization. 

3.3. The Discover Portal 

The Discover portal consists of a virtual desktop with local and shar

shared areas implement a rep

namically formed user groups. Locking mechanisms are used to maintain consistency. 

The base portal is presented to the user after authentication and access verification using 

Grid credentials. This provides the user with a list of available Grid and Collaboratory 

services that the user is authorized to access and allows the user to select the set of local 

or remote services to be used during the session. The application interaction desktop 



consists of (1) a list of interaction objects and their exported interaction interfaces (views 

and/or commands), (2) an information pane that displays global updates (current time 

step of a simulation) from the application, and (3) a status bar that displays the current 

mode of the application (computing, interacting) and the status of issued command/view 

requests. The list of interaction objects is once again customized to match the client's 

access privileges. Chat and whiteboard tools can be launched from the desktop to support 

collaboration. View requests generate separate (possibly shared) panes using the 

corresponding view plug-in. A snapshot of the Discover portal is shown in Appendix A. 

4. Operation of the Discover Grid enabled Middleware 

Figure 3: Operation of the Discover Grid-enabled middleware. 
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middleware and registers its services with the CORBA trade

 local DiscoverCorbaSever service). Each service is uniquely identified at the trader 

by its name and the machine address of its host. A client logging on to the middleware 

through the Discover portal first authenticates with the DiscoverCollab service. The 



client is then presented with a list of all services and applications, local and remote, to 

which the client has access privileges. The client can now interactively compose and 

configure its middleware stack using these services, and can use this customized stack 

and associated local and remote Grid as well as Collaboratory services to acquire 

resources, configure and launch applications, connect to, monitor and steer the 

applications, terminate applications and collaborate with other users. Note the client has 

to perform a second level of authentication with the DiscoverGSI service before 

accessing available resources, services or applications. The credentials presented by the 

client during this authentication are used to delegate the required client proxies. Through 

these proxies, clients can discover local and remote resources using the DiscoverMDS 

service, allocate resources and run applications using DiscoverGRAM service, monitor 

the status of applications and resources using the DiscoverEvent service and perform 

data/file transfer using the DiscoverGASS service. DiscoverGRAM also allows authorized 

users to terminate an application. The DiscoverCollab services enable the client to 

monitor, interact with and steer (local and remote) applications and to collaborate with 

other users connected to the middleware. Key operations are briefly described below.  

Security/Authentication: The Discover security model is based on the Globus GSI 

protocol and builds on the CORBA Security Service. The GSI delegation model is used 

to create and delegate an intermediary object (the CORBA GSI Server Object) between 

the client and the service. The process consists of three steps: (1) Client and server 

objects mutually authenticate using the CORBA Security Service. (2) The client 

delegates the DiscoverGSI server object to create a proxy object that is authorized to 



communicate with other Grid Services. (3) The client can use this secure proxy object to 

securely invoke the services. 

Each Discover server supports a two-level access control for collaboratory services: 

the

iscover servers locate each 

oth

ir globally unique identifiers, which are dynamically 

ass

us Grid services: Job submission and remote data access: Discover 

mi

 first level manages access to the server while the second level manages access to a 

particular application. Applications are required to be registered with a server and to 

provide a list of users and their access privileges (e.g. read-only, read-write). This 

information is used to create customized access control lists.  

Discovery of servers, applications and resources: Peer D

er using the CORBA trader services. The CORBA trader service maintains server 

references as service-offer pairs. All Discover servers are identified by the service-id 

“Discover”. The service offer contains the CORBA object reference and a list of 

properties defined as name-value pairs. Thus the object can be identified based on the 

service it provides or its properties.  

Applications are located using the

igned by the Discover server and are a combination of the server's IP address and a 

local count at the server. Resources are discovered using the Globus MDS Grid 

information service, which is accessed via the MDSHandler servlet and the DiscoverMDS 

service interface. 

Accessing Glob

ddleware allows users to launch applications on remote resources using the 

DiscoverGRAM service. Clients invoke the GRAMHandler servlet to submit jobs. The 

DiscoverGRAM service submits jobs to the Globus gatekeeper after authenticating using 

the DiscoverGSI service. The user can then monitor jobs using the DiscoverEvent service. 



Similarly, clients can store and access remote data using the DiscoverGASS service. The 

GASSHandler servlet invokes the delegated DiscoverGASS service to transfer files using 

a client specified protocol. 

Distributed collaboration: The Discover collaboratory enables multiple clients to 

co

r 

co

: 

Se

llaboratively interact with and steer local and remote applications. The Collaboration 

Handler servlet at each middleware host handles the collaboration on its side, while a 

dedicated polling thread is used on the client side. All clients connected to an application 

instance form a collaboration group by default. However, as clients may connect to an 

application through a remote host, collaboration groups can span multiple hosts. In this 

case, the DiscoverCollab objects at the host polls other hosts for updates and responses.  

The peer-to-peer middleware architecture offers two significant advantages fo

llaboration. First, it reduces the network traffic generated. This is because, instead of 

sending individual collaboration messages to all the clients connected through a remote 

middleware host, only one message is sent to that remote host, which then updates its 

locally connected clients. Since clients always interact through the host closest to them 

and the broadcast messages for collaboration are generated at this host, these messages 

don't have to travel large distances across the network. This reduces overall network 

traffic as well as client latencies, especially when the hosts are geographically far away. It 

also leads to better scalability in terms of the number of clients that can participate in a 

collaboration session without overloading a host, as the load now spans multiple hosts.  

Distributed locking and logging for interactive steering and collaboration

ssion management and concurrency control is based on capabilities granted by the 

middleware. A simple locking mechanism is used to ensure that the application remains 



in a consistent state during collaborative interactions. This ensures that only one client 

“drives” (issues commands) to the application at any time. In the distributed middleware 

case, locking information is only maintained at the application's middleware host i.e. the 

Discover middleware to which the application connects directly. The session archival 

handler maintains two types of logs. The first log maintains all interactions between a 

client and an application. For remote applications, the client logs are maintained at the 

middleware host where the clients are connected. The second log maintains all requests, 

responses, and status messages for each application throughout its execution. This log is 

maintained at the application’s middleware host (the middleware to which the application 

is directly connected). 

Figure 4: Delegation model across services.

As noted above the bles local and remote 

ser

 Discover Grid-enabled middleware ena

vices to be combined in an ad hoc way and collectively used to get achieved desired 

behaviors. For example, consider the scenario as illustrated in Figure 4. In this example, a 

client copies log files generated by the application during a run using a remote 

DiscoverGASS service. The client logs on to the middleware (step 1) and access the 

logging collaboratory service (part of DiscoverCollab). The logging service uses the 

client’s credentials and the DiscoverGSI service (step 2) to create and delegate a proxy 

logging service (step 3). This proxy logging services interacts with the DiscoverGASS 



service to transfer the log files to the local host (step 4). Note that these interactions are 

over a secure IIOP channel. 

5. Experimental Evaluation 
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Figure 5: Experimental setup of the Grid-enabled Discover middleware. 

rid-enabled Discover middleware is presently deployed at TASSL, 

iversity and at the Center for Subsurface Modeling (CSM) and Institute for 

Geophysics (IG), University of Texas at Austin, and is used to enable multiple 

applications on the Grid from varied disciplines including reservoir 

engineering/subsurface modeling, seismic modeling, computational fluid dynamics, 

numerical relativity and astrophysics. We are currently expanding the network to include 

a deployment at University of Maryland and the Center for Advanced Computational 

Research (CARC), California Institute of Technology. The middleware implementation 

builds on commodity technologies including the Apache Tomcat Servlet engine and the 

JacORB [3] an open source implementation of the CORBA ORB. 

This section presents an experimental evaluation of the Disc

erall setup for these experiments is show in Figure 5. It consisted of deployments at 

grid1.rutgers.edu, discover.rutgers.edu and tassl-pc-2.rutgers.edu at Rutgers University 



and ajax.ices.utexas.edu at University of Texas. Deployments at grid1.rutgers.edu and 

ajax.ices.utexas.edu had complete installations (Grid and Collaboratory services) while 

discover.rutgers.edu had only Grid services and tassl-pc-2.rutgers.edu had only 

Collaboratory services. We used the transport equation application kernel with adaptive 

mesh refinement (tportamr) for our experiments. The application was run on Beowulf 

clusters at Rutgers. The evaluations consisted of evaluating the latencies in accessing 

local and remote services over local and wide area networks and are presented below. 
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Figure 6a, 6b: DiscoverMDS service discovers resources on grid1.rutgers.edu (6a) and 

discover.rutg  

Evaluation of DS service is 

ers.edu (6b). a represents the time to locate the DiscoverMDS service and b

represents the time to query the resources on the selected host. 

 the DiscoverMDS service: The evaluation of the DiscoverM

divided into three cases. In the first case the DiscoverMDS service is locally present (case 

P). In the second case the DiscoverMDS service is borrowed from a remote host over 

LAN (case B-LAN). In the third case the DiscoverMDS service is borrowed from a 

remote host over WAN (case B-WAN). In all three cases clients used the DiscoverMDS 

service to discover resources at Rutgers. In each case, the experiment consists of two 

steps: (a) discovering the DiscoverMDS service using the CORBA Trader service and (b) 

invoking the service to discover resources. The times for steps (a) and (b) for discovering 



resources on grid1.rutgers.edu and discover.rutgers.edu are plotted in Figure 6a and 6b 

respectively. As seen in the plots, the time for discovering the service (step a) is small 

compared to the time for querying for resources (step b). This is primarily because of the 

overheads of querying MDS and packing, transporting and unpacking the large amount of 

returned resource information. Note that the average time for querying resources on 

discover.rutgers.edu is larger than that for grid1.rutgers.edu as discover.rutgers.edu is a 

16 node cluster while grid1.rutgers.edu is a single processor machine. 

Figure 7: DiscoverGRAM service launches the tportamr application using 
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aluation of the DiscoverGRAM service: The evaluation of DiscoverGR

nsisted of using the service to launch and terminate the tportamr application on 

grid1.rutgers.edu. Application deployment consisted of the following steps: (a) 

discovering the DiscoverGRAM service, (b) using DiscoverGSI to delegate a service 

proxy, (c) create an event channel for application monitoring, and (d) launch the 

application on the selected host i.e. grid1.rutgers.edu. Application termination similarly 

consisted of the following steps: (f) discovering the DiscoverGRAM service, (g) using 

DiscoverGSI to delegate a service proxy, (h) creating an event channel for application 



log (File size in bytes):Resouce on grid1.rutgers.edu
0 2 4 6 8

lo
g 

(T
ra

nf
er

 ti
m

e 
in

 m
se

c)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P(Present)

Figure 8: Log-Log plot of 
transfer times for various files 

 

ser

of the DiscoverGASS 

ser

 Th es 

ately 10 MB and the 

monitoring, and (i) terminate the application selected. Note that the resource for 

launching the application and the application to be terminated are discovered and selected 

using the DiscoverMDS service. The times required for each step are plotted in Figure 7. 

As in the previous experiment, we consider three cases: in case P, the required

vices are local, in case B-LAN, the required services are borrowed over LAN, and in 

case B-WAN, the required services are borrowed over WAN. Note that the times for 

lauching and terminating the application are quite comparable for the three cases. The 

large termination time is due to the cleanup performed by GRAM. 

Evaluation of the DiscoverGASS service: The evaluation 

sizes using DiscoverGASS
service (P case). 

e file sizes and the transfer tim

vice consisted of using the service to transfer 

files of different sizes. We measured the time 

required to transfer files between 

grid1.rutgers.edu and discover.rutgers.edu. In 

this experiment we considered the case P where 

the DiscoverGASS service was locally present. 

The measured transfer time and the file sizes in 

bytes are plotted in Figure 8 using a log-log scale.

varied exponentially and ranged from 2 bytes to approxim

corresponding transfers times varied from 9 msec. to 637 msec. respectively. It can be 

seen that the DiscoverGASS performed well for small and medium file sizes (9 msec. for 

~2 bytes and 47 msec. for ~1 MB). However the performance rapidly deteriorated (637 

msec.) as file sizes approached 10 MB. Note that the typical size of a log files generated 



during the DiscoverGRAM experiment was around 100 KB. We are currently evaluating 

cases where the service is borrowed over LAN (B-LAN) and over WAN (B-WAN). 

Evaluation of the DiscoverCollab service: The evaluation for Collaboratory services 

(ac

ented the design, implementation, operation and evaluation of the 

cess latency over local area and wide area networks, effect of multiple clients on 

access latencies and server memory overheads due to local and remote applications) was 

presented in [16]. This evaluation consisted of measuring scalability, response times and 

latencies when multiple clients collaboratively interact with an application. These 

measurements were conducted for cases where the DiscoverCollab service is local, 

borrowed over a LAN and borrowed over a WAN. The results showed that although 

response times were larger when using borrowed services, the overhead was constant for 

large response sizes. Furthermore, when using the WAN, the results showed the benefits 

of the hybrid P2P design and the use of IIOP. The results also demonstrated that the 

middleware scaled to over 20 (distributed) collaborating clients simultaneously 

interacting with an application. 

6. Conclusions 

This paper pres

Discover Grid-enabled middleware substrate. The middleware substrate enables Grid 

infrastructure services provided by the Globus Toolkit (security, information, resource 

management, storage) to interoperate with collaboratory services provided by Discover 

(collaborative application access, monitoring, and steering). Furthermore, it enables users 

to seamlessly access and integrates local and remote services to synthesize customized 

middleware configurations on demand. Clients can use the Grid as well as Collaboratory 

services integrated by the middleware to acquire resources, configure and launch 



applications, connect to monitor and steer the applications, terminate applications and 

collaborate with other users. A sample application scenario, oil reservoir optimization on 

the Grid, enabled by the middleware substrate was presented. An experimental evaluation 

of access latencies for local and remote (over LAN and WAN) Grid services using the 

middleware substrate was presented. These results show that overheads for using remote 

services are acceptable. 
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Appendix A 

 

Steps Sequence of Events 
1 Client logs in using “Grid Credentials” 
2 Client selects the desired action 
3 Client selects and configures local/remote Grid and Collaboratory services 
4 Client queries MDS services for resources 
5 Client is presented with details of a selected resource 
6 Client launches applications on selected resource 
7 Client presented with an option to interact with an executing application 
8 Client presented with a collaborative interaction and steering interface 

Figure 9: A snapshot of the Discover portal. 
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