
Integrating Grid Services using the DISCOVER
Middleware1

Viraj N. Bhat and Manish Parashar
The Applied Software Systems Laboratory, Dept. of Electrical and Computer Engr.,

Rutgers, The State University of New Jersey, 94 Brett Road, Piscataway, NJ 08854
CAIP Technical Report-TR-268 {virajb, parashar}_@caip.rutgers.edu

Abstract
Recent years have seen the development and deployment of a number of

application/domain specific problem solving environments (PSEs) and collaboratories.

These systems have evolved in parallel with the Grid and have been built on customized

architectures and specialized technologies to meet unique user requirements and support

specific user communities. While enabling these systems to share services and

capabilities has many advantages, enabling such interoperability presents many

challenges. In this paper we present the design, implementation and evaluation of the

Grid-enabled Discover middleware substrate that enables Grid infrastructure services

provided by the Globus Toolkit (security, information, resource management, storage) to

interoperate with collaboratory services provided by Discover (collaborative application

access, monitoring, and steering). Furthermore, it enables users to seamlessly access and

integrate local and remote services to synthesize customized middleware configurations

on demand.

1. Introduction

Grid computing [9] is rapidly emerging as the dominant paradigm of wide area

distributed computing. Its goal is to realize a persistent, standards-based service

infrastructure that enables coordinated sharing of autonomous and geographically

distributed hardware, software, and information resources. The emergence of such Grid

environments has made it possible to conceive a new generation of applications based on

seamless aggregations, integrations and interactions of resources, services/components

and data. These Grid applications will be built on a range of services including

1 Support for this work was provided by the NSF via grants numbers ACI 9984357 (CAREERS), EIA
0103674 (NGS) and EIA-0120934 (ITR), DOE ASCI/ASAP (Caltech) via grant numbers PC295251 and
1052856.

multipurpose domain services for authentication, authorization, discovery, messaging,

data input/output, and application/domain specific services such as application

monitoring and steering, application adaptation, visualization, and collaboration.

Recent years have also seen the development and deployment of a number of

application/domain specific problem solving environments (PSEs) and collaboratories

(e.g. Upper Atmospheric Research Collaboratory (UARC) [19], Discover [16],

Astrophysics Simulation Collaboratory (ASC) [24], NPACI HotPage [26], Environmental

Molecular Sciences Collaboratory (ESML) [14], Diesel Combustion Collaboratory (DCC) [6],

and Narrative-based, Immersive, Constructionist/Collaborative Environments for children (NICE)

[23]). These systems provide specialized services to their user communities and/or

address specific issues in wide area resource sharing and Grid computing. However,

emerging Grid applications require combining these services in a seamless manner. For

example, the execution of an application on the Grid requires security services to

authenticate users and the application, information services for resource discovery,

resource management services for resource allocation, data transfer services for staging,

and scheduling services for application execution. Once the application is executing on

the Grid, interaction, steering, and collaboration services allow geographically distributed

users to collectively monitor and control the application allowing the application to be a

true research or instructional modality. Once the application terminates data storage and

clean up services come into play.

While enabling collaboratories/PSEs to share services and capabilities has many

advantages, enabling such interoperability presents many challenges. The PSEs have

evolved in parallel with the Grid computing effort and have been developed to meet

unique requirements and support specific user communities. As a result, these systems

have customized architectures and implementations, and build on specialized enabling

technologies. Furthermore, there are organizational constraints that may prevent such

interaction as it involves modifying existing software. A key challenge then, is the design

and development of a robust and scalable middleware that addresses interoperability, and

provides essential enabling services such as security and access control, discovery, and

interaction and collaboration management. Such a middleware should provide loose

coupling among systems to accommodate organizational constraints and an option to join

or leave this interaction at any time. It should define a minimal set of interfaces and

protocols to enable the PSEs to share resources, services, data and applications on the

Grid while being able to maintain their architectures and implementations of choice. A

key goal of the Global Grid Forum [13] and the Open Grid Services Architecture

(OGSA) [12] is to address these challenges by defining community standards and

protocols.

The primary objective of this paper is to investigate the design of a prototype

middleware that will enable interoperability between PSE/collaboratory and Grid services

to support the overall execution of computational applications on the Grid. In this paper

we present the design, implementation and evaluation of the Grid-enabled Discover

middleware substrate that enables Grid infrastructure services provided by the Globus

Toolkit [10] to interoperate with collaboratory services provided by the Discover

computational collaboratory, and enables users to seamlessly access and integrate local

and remote services to synthesize customized middleware configurations on demand.

This work builds on our previous work on the CORBA Community Grid (CoG) Kit [21]

and Discover middleware [16].

2. The Grid-enabled Middleware Architecture

Pool of Middleware services

Grid Collaborative Portals

Middleware

LAN or WAN

High Speed Networks

Figure 1: Discover Grid-enabled middleware for interoperable collaboratories.

The overall goal of the Grid-enabled Discover middleware substrate is to define

interfaces and mechanisms for integration and interoperation of the services provided by

Discover and the Globus Toolkit. A schematic overview of the middleware substrate is

presented in Figure 1, and consists of a network of peer hosts that export a selection of

services. The middleware essentially provides a “repository of services” view to clients

and controlled access to local and remote services. It can be thought of as consisting of

two service layers distributed across on the Grid – the Grid Service Layer and the

Collaboratory Service Layer (see Figure 1). The collaboration service layer includes

services for remote application access, collaborative application monitoring and steering,

locking, and concurrency control. This layer builds on the Discover computational

collaboratory, which consists of a peer-to-peer network of Discover interaction and

collaboration servers and defines collaboratory services across these servers.

Grid Resources for Applications

DatabasesComputers

Sensors

Computation Power Computation Power

Services requested by the Client

event servicedirectory services authentication+ +

Grid Infrastructure

collaboration tools
chat,whiteboard

collaborative access
control

global
updates

visualization

locking steering

service
discovery

notification serviceauthorization

authentication
resource
discovery

event
service

 job scheduling

directory
services

Collaboration Services

Grid Services

...

...

...

...

.... ...

...

......

... ...

...

...

...

Borrowed services

Services available

Selected Services

The Grid service layer includes infrastructure services such as resource discovery,

authentication, security, directory services, resource management and scheduling. Some

services, such as the event service, span both layers. The Grid services layer builds on the

CORBACoG kit [21]. The CORBACoG provides access to CORBA server objects,

which are wrappers around Globus Grid services. It also provides access to the CORBA

Security Service and the CORBA Event Service. Note that all services in both service

layers can be accessed by all clients (local and remote) connected to the middleware as

long as they have appropriate access privileges – i.e. if certain services are not present at

the local host they can be borrowed from a remote host. For example in Figure 1, the

client uses locally available authentication and directory services and borrows the event

service remote a remote host. The middleware combines these local and borrowed

services and presents a virtual middleware to the client.

3. Implementation of the Grid-enabled Middleware Substrate

bled middleware.

An im ed in

Figure 2. It consists of collaborative client portals at the front end, computational

Grid Infrastructure

Grid Enabled Discover Middleware

DiscoverCollab

DiscoverGRAM

DiscoverMDS

DiscoverGASS DiscoverGSI

DiscoverCorbaServer

DiscoverEvent

Servlet Interface

Discover Portal

Whiteboard/Chat Steering

Logging

DiscoverCollab Sub services

Visualization

Figure 2: Conceptual architecture of the Discover Grid-ena

plementation overview of the Grid-enabled Discover middleware is present

res

ice discovery

me

s build on commodity web servers, and

extend their functionality (using Java Servlets) to provide specialized services for real-

ources, services and applications at the backend and a network of peer hosts (servers)

providing services in the middle. As mentioned above, the middle tier provides a

repository of services view to the client and controlled access to Grid resources, services

and applications. It also enables users to synthesize customized middleware

configurations by combining local and remote services that they have access to. Clients

are as simple as possible to ensure pervasive access. A client connects to its “closest”

host and has access to all services based on its privileges and capabilities.

The prototype middleware substrate builds on CORBA/IIOP and provides peer-to-peer

connectivity between hosts within and across domains. Server/serv

chanisms are built using the CORBA Naming [18] and Trader [27] services, which

allows a server to locate remote servers and to access applications/services connected to

the remote servers. Although CORBA does introduce some overheads, it provides

sophisticated services such as security, discovery and naming and enables interoperability

between servers. Furthermore, the use of IIOP can reduce client latencies when the

communications are over large geographical distances as demonstrated in [16]. Note that

XML based protocols (e.g. SOAP [25]) are popular technologies for service based

distributed systems, the choice between CORBA IDL and XML in our prototype is a

trade-off between speed and loose coupling. XML is self-describing and can provide a

greater level of interoperability. However, XML parsing is still an overhead and is slower

than CORBA IDL based object marshalling.

3.1. Discover Middleware Host (Server)

Discover interaction/collaboration server

time plication interaction and steering anap d for collaboration between client groups.

Cl

an be generally

d e. This service inherits from the CORBA Trader

ser

ients are Java applets and communicate with the server over HTTP using a series of

HTTP GET and POST requests. Application-to-server communication either uses

standard distributed object protocols such as CORBA or a more optimized, custom

protocol over TCP sockets. An ApplicationProxy object is created for each active

application/service at the server, and is given a unique identifier. This object encapsulates

the entire context for the application. Three communication channels are established

between a server and an application for application registration and updates, client

interaction requests and application responses respectively. Core service handlers

provided by each server include the MasterHandler, CollaborationHandler, Command

Handler, Security/Authentication Handler, Grid Service Handlers (GSI, MDS, GRAM,

GASS) and the Daemon servlet that listens for application connections. Details about the

Discover Interaction and Collaboration servers can be found in [16] [17].

3.2. Discover Middleware Services

The Discover Grid enabled middleware substrate defines interfaces for three classes of

services. The first is the DiscoverCorbaServer service interface, which c

terme as the service discovery servic

vice and allows hosts to locate services on demand. The second is the DiscoverCollab

service interface, which provides uniform access to local or remote collaboratory

services. Finally, the third class consists of interfaces to the Grid infrastructure services

and provides uniform access to underlying Grid resources. This class includes the

DiscoverGSI, DiscoverMDS DiscoverGRAM, DiscoverGASS and DiscoverEvent service

interfaces. Each host that is a part of the middleware substrate instantiates CORBA

objects that implement these interfaces and are essentially wrappers around the

corresponding services. Each host implements the DiscoverCorbaServer interface and

may implement one or more of the other interfaces.

DiscoverCorbaSever: The DiscoverCorbaServer interface is implemented by each

host and exports all available services at the host to the Discover middleware through the

Trader service. Local services must register their presence with the DiscoverCorbaServer

ser

 resources. The service defines an event channel

at

en

 Directory

Int

vice to be discovered. A service description typically contains its name, location (i.e.

address of its host) and its availability.

DiscoverEvent: The DiscoverEvent interface is also implemented by each host. The

DiscoverEvent service extends the CORBA Event Service [7] and enables users/services

to monitor the status of applications and

each host and clients/services can publish and subscribe to local and remote channels.

DiscoverGSI: The DiscoverGSI interface represents the Globus GSI authorization and

authentication service. It provides the basic security framework for the middleware

substrate, and is used to create and delegate secure proxy objects on remote hosts and to

able secure access to local and remote (Collaboratory and Grid) services. DiscoverGSI

uses Grid credentials provided by the user at login to delegate proxy objects.

DiscoverMDS: The DiscoverMDS interface represents an instance of the Globus MDS

service and provides access to information about Grid resources. The DiscoverMDS

CORBA object accesses MDS information using the Java Naming and

erfaces (JNDI) libraries. DiscoverMDS uses the DiscoverEvent service to publish

updates to users and other services.

DiscoverGRAM: The DiscoverGRAM service represents the Globus GRAM service

and allows clients to submit jobs on local and remote hosts. DiscoverGRAM objects

wo

ces to access remote data and transfer data, application logs and

ap

is includes services for monitoring application status, application

ste

ed areas. The

licated shared workspace and enable collaboration among

dy

rks in coordination with the DiscoverGSI service for authorization and authentication

with Grid resources. It also uses the DiscoverEvent service to receive updates regarding

the status of jobs.

DiscoverGASS: The DiscoverGASS interface represents the Globus GASS service and

enables users/servi

plications executables. This enables applications to pre-stage data on remote machines,

cache data, and log remote application outputs, and stage executables on remote

computers. The DiscoverGASS service also allows clients to securely transfer files

between source and destination pairs using the GridFTP [1] protocol, which also uses the

DiscoverGSI service.

DiscoverCollab: The DiscoverCollab interface represents the collaboratory services

provided by a host. Th

ering, locking and concurrency control, collaboration and visualization.

3.3. The Discover Portal

The Discover portal consists of a virtual desktop with local and shar

shared areas implement a rep

namically formed user groups. Locking mechanisms are used to maintain consistency.

The base portal is presented to the user after authentication and access verification using

Grid credentials. This provides the user with a list of available Grid and Collaboratory

services that the user is authorized to access and allows the user to select the set of local

or remote services to be used during the session. The application interaction desktop

consists of (1) a list of interaction objects and their exported interaction interfaces (views

and/or commands), (2) an information pane that displays global updates (current time

step of a simulation) from the application, and (3) a status bar that displays the current

mode of the application (computing, interacting) and the status of issued command/view

requests. The list of interaction objects is once again customized to match the client's

access privileges. Chat and whiteboard tools can be launched from the desktop to support

collaboration. View requests generate separate (possibly shared) panes using the

corresponding view plug-in. A snapshot of the Discover portal is shown in Appendix A.

4. Operation of the Discover Grid enabled Middleware

Figure 3: Operation of the Discover Grid-enabled middleware.

This overall operation of the Grid enabled middleware is illustrated in Figure 3. Each

host joins the r service (via

the

Step 2 : Middleware returns
services

Step 8 :Remote Clients log on and collaborates with the
running application

Trader

Client Client

Step 0 : Register
Services with the

Trader

Step 3 :Client select services

Step 4 :Client queries resources in the
globus domain

Step 5 :Client submites job on
the specifed resource

Step 6 :Application is deployed

Step 7 :Steer and monitor
job through the Discover

Collaboration Service

DiscoverCorbaServer

Borrowed Services

Client to Middleware Interaction

Middleware to Client Interaction

DiscoverCollab

DiscoverCorbaServer

DiscoverCollab

DiscoverGRAM

DiscoverGSIDiscoverEvent

DiscoverGASS DiscoverMDS

Step 1
Client Login

Actual Services

Grid Resources

middleware and registers its services with the CORBA trade

 local DiscoverCorbaSever service). Each service is uniquely identified at the trader

by its name and the machine address of its host. A client logging on to the middleware

through the Discover portal first authenticates with the DiscoverCollab service. The

client is then presented with a list of all services and applications, local and remote, to

which the client has access privileges. The client can now interactively compose and

configure its middleware stack using these services, and can use this customized stack

and associated local and remote Grid as well as Collaboratory services to acquire

resources, configure and launch applications, connect to, monitor and steer the

applications, terminate applications and collaborate with other users. Note the client has

to perform a second level of authentication with the DiscoverGSI service before

accessing available resources, services or applications. The credentials presented by the

client during this authentication are used to delegate the required client proxies. Through

these proxies, clients can discover local and remote resources using the DiscoverMDS

service, allocate resources and run applications using DiscoverGRAM service, monitor

the status of applications and resources using the DiscoverEvent service and perform

data/file transfer using the DiscoverGASS service. DiscoverGRAM also allows authorized

users to terminate an application. The DiscoverCollab services enable the client to

monitor, interact with and steer (local and remote) applications and to collaborate with

other users connected to the middleware. Key operations are briefly described below.

Security/Authentication: The Discover security model is based on the Globus GSI

protocol and builds on the CORBA Security Service. The GSI delegation model is used

to create and delegate an intermediary object (the CORBA GSI Server Object) between

the client and the service. The process consists of three steps: (1) Client and server

objects mutually authenticate using the CORBA Security Service. (2) The client

delegates the DiscoverGSI server object to create a proxy object that is authorized to

communicate with other Grid Services. (3) The client can use this secure proxy object to

securely invoke the services.

Each Discover server supports a two-level access control for collaboratory services:

the

iscover servers locate each

oth

ir globally unique identifiers, which are dynamically

ass

us Grid services: Job submission and remote data access: Discover

mi

 first level manages access to the server while the second level manages access to a

particular application. Applications are required to be registered with a server and to

provide a list of users and their access privileges (e.g. read-only, read-write). This

information is used to create customized access control lists.

Discovery of servers, applications and resources: Peer D

er using the CORBA trader services. The CORBA trader service maintains server

references as service-offer pairs. All Discover servers are identified by the service-id

“Discover”. The service offer contains the CORBA object reference and a list of

properties defined as name-value pairs. Thus the object can be identified based on the

service it provides or its properties.

Applications are located using the

igned by the Discover server and are a combination of the server's IP address and a

local count at the server. Resources are discovered using the Globus MDS Grid

information service, which is accessed via the MDSHandler servlet and the DiscoverMDS

service interface.

Accessing Glob

ddleware allows users to launch applications on remote resources using the

DiscoverGRAM service. Clients invoke the GRAMHandler servlet to submit jobs. The

DiscoverGRAM service submits jobs to the Globus gatekeeper after authenticating using

the DiscoverGSI service. The user can then monitor jobs using the DiscoverEvent service.

Similarly, clients can store and access remote data using the DiscoverGASS service. The

GASSHandler servlet invokes the delegated DiscoverGASS service to transfer files using

a client specified protocol.

Distributed collaboration: The Discover collaboratory enables multiple clients to

co

r

co

:

Se

llaboratively interact with and steer local and remote applications. The Collaboration

Handler servlet at each middleware host handles the collaboration on its side, while a

dedicated polling thread is used on the client side. All clients connected to an application

instance form a collaboration group by default. However, as clients may connect to an

application through a remote host, collaboration groups can span multiple hosts. In this

case, the DiscoverCollab objects at the host polls other hosts for updates and responses.

The peer-to-peer middleware architecture offers two significant advantages fo

llaboration. First, it reduces the network traffic generated. This is because, instead of

sending individual collaboration messages to all the clients connected through a remote

middleware host, only one message is sent to that remote host, which then updates its

locally connected clients. Since clients always interact through the host closest to them

and the broadcast messages for collaboration are generated at this host, these messages

don't have to travel large distances across the network. This reduces overall network

traffic as well as client latencies, especially when the hosts are geographically far away. It

also leads to better scalability in terms of the number of clients that can participate in a

collaboration session without overloading a host, as the load now spans multiple hosts.

Distributed locking and logging for interactive steering and collaboration

ssion management and concurrency control is based on capabilities granted by the

middleware. A simple locking mechanism is used to ensure that the application remains

in a consistent state during collaborative interactions. This ensures that only one client

“drives” (issues commands) to the application at any time. In the distributed middleware

case, locking information is only maintained at the application's middleware host i.e. the

Discover middleware to which the application connects directly. The session archival

handler maintains two types of logs. The first log maintains all interactions between a

client and an application. For remote applications, the client logs are maintained at the

middleware host where the clients are connected. The second log maintains all requests,

responses, and status messages for each application throughout its execution. This log is

maintained at the application’s middleware host (the middleware to which the application

is directly connected).

Figure 4: Delegation model across services.

As noted above the bles local and remote

ser

 Discover Grid-enabled middleware ena

vices to be combined in an ad hoc way and collectively used to get achieved desired

behaviors. For example, consider the scenario as illustrated in Figure 4. In this example, a

client copies log files generated by the application during a run using a remote

DiscoverGASS service. The client logs on to the middleware (step 1) and access the

logging collaboratory service (part of DiscoverCollab). The logging service uses the

client’s credentials and the DiscoverGSI service (step 2) to create and delegate a proxy

logging service (step 3). This proxy logging services interacts with the DiscoverGASS

service to transfer the log files to the local host (step 4). Note that these interactions are

over a secure IIOP channel.

5. Experimental Evaluation

The G Rutgers

Un

over middleware. The

ov

Ethernet

Windows NT
800 Mhz Pentium III

Grid Enabled DISCOVER Middleware

discover.rutgers.edu
Globus Toolkit 2.2Globus Toolkit 2.0

DiscoverGRAM

DiscoverCorbaServer

Red Hat Linux 8.0
Globus 2.0

1.7 GHz Pentium 4

Servlets interface to Clients

DiscoverCollab

DiscoverGASS DiscoverGSI DiscoverMDS DiscoverEvent

grid1.rutgers.edu

ajax.ices.utexas.edu

DiscoverGRAM

DiscoverCorbaServer

Servlets interface to Clients

DiscoverCollab

DiscoverGASS DiscoverGSI DiscoverMDS DiscoverEvent

Linux
 350 Mhz Pentium II

DiscoverCorbaServer

Servlets interface to Clients
tassl-pc-2.rutgers.edu

DiscoverCollab

Figure 5: Experimental setup of the Grid-enabled Discover middleware.

rid-enabled Discover middleware is presently deployed at TASSL,

iversity and at the Center for Subsurface Modeling (CSM) and Institute for

Geophysics (IG), University of Texas at Austin, and is used to enable multiple

applications on the Grid from varied disciplines including reservoir

engineering/subsurface modeling, seismic modeling, computational fluid dynamics,

numerical relativity and astrophysics. We are currently expanding the network to include

a deployment at University of Maryland and the Center for Advanced Computational

Research (CARC), California Institute of Technology. The middleware implementation

builds on commodity technologies including the Apache Tomcat Servlet engine and the

JacORB [3] an open source implementation of the CORBA ORB.

This section presents an experimental evaluation of the Disc

erall setup for these experiments is show in Figure 5. It consisted of deployments at

grid1.rutgers.edu, discover.rutgers.edu and tassl-pc-2.rutgers.edu at Rutgers University

and ajax.ices.utexas.edu at University of Texas. Deployments at grid1.rutgers.edu and

ajax.ices.utexas.edu had complete installations (Grid and Collaboratory services) while

discover.rutgers.edu had only Grid services and tassl-pc-2.rutgers.edu had only

Collaboratory services. We used the transport equation application kernel with adaptive

mesh refinement (tportamr) for our experiments. The application was run on Beowulf

clusters at Rutgers. The evaluations consisted of evaluating the latencies in accessing

local and remote services over local and wide area networks and are presented below.

DiscoverMDS Steps:Resource on grid1.rutgers.edu
a b Total Time

Ti
m

e
in

 m
se

c

0

500

1000

1500

2000
P(Present)
B(Borrowed)-LAN
B(Borrowed)-WAN

DiscoverMDS Steps:Resource on discover.rutgers.edu
a b Total Time

Ti
m

e
in

 m
se

c

0

500

1000

1500

2000
P(Present)
B(Borrowed)-LAN
B(Borrowed)-WAN

DiscoverMDS Steps:Resource on grid1.rutgers.edu
a b Total Time

Ti
m

e
in

 m
se

c

0

500

1000

1500

2000
P(Present)
B(Borrowed)-LAN
B(Borrowed)-WAN

DiscoverMDS Steps:Resource on discover.rutgers.edu
a b Total Time

Ti
m

e
in

 m
se

c

0

500

1000

1500

2000
P(Present)
B(Borrowed)-LAN
B(Borrowed)-WAN

Figure 6a, 6b: DiscoverMDS service discovers resources on grid1.rutgers.edu (6a) and

discover.rutg

Evaluation of DS service is

ers.edu (6b). a represents the time to locate the DiscoverMDS service and b

represents the time to query the resources on the selected host.

 the DiscoverMDS service: The evaluation of the DiscoverM

divided into three cases. In the first case the DiscoverMDS service is locally present (case

P). In the second case the DiscoverMDS service is borrowed from a remote host over

LAN (case B-LAN). In the third case the DiscoverMDS service is borrowed from a

remote host over WAN (case B-WAN). In all three cases clients used the DiscoverMDS

service to discover resources at Rutgers. In each case, the experiment consists of two

steps: (a) discovering the DiscoverMDS service using the CORBA Trader service and (b)

invoking the service to discover resources. The times for steps (a) and (b) for discovering

resources on grid1.rutgers.edu and discover.rutgers.edu are plotted in Figure 6a and 6b

respectively. As seen in the plots, the time for discovering the service (step a) is small

compared to the time for querying for resources (step b). This is primarily because of the

overheads of querying MDS and packing, transporting and unpacking the large amount of

returned resource information. Note that the average time for querying resources on

discover.rutgers.edu is larger than that for grid1.rutgers.edu as discover.rutgers.edu is a

16 node cluster while grid1.rutgers.edu is a single processor machine.

Figure 7: DiscoverGRAM service launches the tportamr application using

Total time to cancel job – i.e. f+g+h+ij

Job cancellation time: DiscoverGRAMi

Event channel creation: DiscoverEventh

Delegation with the DiscoverGSIg

Resolving services: DiscoverGRAMf

Total time to start job – i.e. a+b+c+de

Job start time on grid.1.rutgers.edud

Event channel creation: DiscoverEventc

Delegation: DiscoverGSIb

Resolving services: DiscoverGRAMa

Total time to cancel job – i.e. f+g+h+ij

Job cancellation time: DiscoverGRAMi

Event channel creation: DiscoverEventh

Delegation with the DiscoverGSIg

Resolving services: DiscoverGRAMf

Total time to start job – i.e. a+b+c+de

Job start time on grid.1.rutgers.edud

Event channel creation: DiscoverEventc

Delegation: DiscoverGSIb

Resolving services: DiscoverGRAMa

DiscoverGRAM steps:Resource on grid1.rutgers.edu
a b c d e f g h i j

0

2000

4000

6000

8000

10000

12000

14000 P(Present)
B(Borrowed)-LAN
B(Borrowed)-WAN

steps a, b, c, and d,

Ev AM

co

and terminates the tportamr application using steps f, g, h, i on grid1.rutgers.edu.

aluation of the DiscoverGRAM service: The evaluation of DiscoverGR

nsisted of using the service to launch and terminate the tportamr application on

grid1.rutgers.edu. Application deployment consisted of the following steps: (a)

discovering the DiscoverGRAM service, (b) using DiscoverGSI to delegate a service

proxy, (c) create an event channel for application monitoring, and (d) launch the

application on the selected host i.e. grid1.rutgers.edu. Application termination similarly

consisted of the following steps: (f) discovering the DiscoverGRAM service, (g) using

DiscoverGSI to delegate a service proxy, (h) creating an event channel for application

log (File size in bytes):Resouce on grid1.rutgers.edu
0 2 4 6 8

lo
g

(T
ra

nf
er

 ti
m

e
in

 m
se

c)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P(Present)

Figure 8: Log-Log plot of
transfer times for various files

ser

of the DiscoverGASS

ser

 Th es

ately 10 MB and the

monitoring, and (i) terminate the application selected. Note that the resource for

launching the application and the application to be terminated are discovered and selected

using the DiscoverMDS service. The times required for each step are plotted in Figure 7.

As in the previous experiment, we consider three cases: in case P, the required

vices are local, in case B-LAN, the required services are borrowed over LAN, and in

case B-WAN, the required services are borrowed over WAN. Note that the times for

lauching and terminating the application are quite comparable for the three cases. The

large termination time is due to the cleanup performed by GRAM.

Evaluation of the DiscoverGASS service: The evaluation

sizes using DiscoverGASS
service (P case).

e file sizes and the transfer tim

vice consisted of using the service to transfer

files of different sizes. We measured the time

required to transfer files between

grid1.rutgers.edu and discover.rutgers.edu. In

this experiment we considered the case P where

the DiscoverGASS service was locally present.

The measured transfer time and the file sizes in

bytes are plotted in Figure 8 using a log-log scale.

varied exponentially and ranged from 2 bytes to approxim

corresponding transfers times varied from 9 msec. to 637 msec. respectively. It can be

seen that the DiscoverGASS performed well for small and medium file sizes (9 msec. for

~2 bytes and 47 msec. for ~1 MB). However the performance rapidly deteriorated (637

msec.) as file sizes approached 10 MB. Note that the typical size of a log files generated

during the DiscoverGRAM experiment was around 100 KB. We are currently evaluating

cases where the service is borrowed over LAN (B-LAN) and over WAN (B-WAN).

Evaluation of the DiscoverCollab service: The evaluation for Collaboratory services

(ac

ented the design, implementation, operation and evaluation of the

cess latency over local area and wide area networks, effect of multiple clients on

access latencies and server memory overheads due to local and remote applications) was

presented in [16]. This evaluation consisted of measuring scalability, response times and

latencies when multiple clients collaboratively interact with an application. These

measurements were conducted for cases where the DiscoverCollab service is local,

borrowed over a LAN and borrowed over a WAN. The results showed that although

response times were larger when using borrowed services, the overhead was constant for

large response sizes. Furthermore, when using the WAN, the results showed the benefits

of the hybrid P2P design and the use of IIOP. The results also demonstrated that the

middleware scaled to over 20 (distributed) collaborating clients simultaneously

interacting with an application.

6. Conclusions

This paper pres

Discover Grid-enabled middleware substrate. The middleware substrate enables Grid

infrastructure services provided by the Globus Toolkit (security, information, resource

management, storage) to interoperate with collaboratory services provided by Discover

(collaborative application access, monitoring, and steering). Furthermore, it enables users

to seamlessly access and integrates local and remote services to synthesize customized

middleware configurations on demand. Clients can use the Grid as well as Collaboratory

services integrated by the middleware to acquire resources, configure and launch

applications, connect to monitor and steer the applications, terminate applications and

collaborate with other users. A sample application scenario, oil reservoir optimization on

the Grid, enabled by the middleware substrate was presented. An experimental evaluation

of access latencies for local and remote (over LAN and WAN) Grid services using the

middleware substrate was presented. These results show that overheads for using remote

services are acceptable.

7. References

[1] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming and S. Tuecke.

[2] er, C. Kesselman, J. Tedesco and S. Tuecke. “GASS: A Data

[3] : Implementation and Design of a Java ORB,” In Proceedings. of

[4] . Smith and S.

“GridFTP Protocol Specification,” GGF GridFTP Working Group Document,

September 2002.

J. Bester, I. Fost

Movement and Access Service for Wide Area Computing Systems,” In Proceedings

Sixth Workshop on I/O in Parallel and Distributed Systems pages 365-375 Atlanta

GA, May 5, 1999.

G. Brose. “JacORB

DAIS'97, IFIP WG 6.1 International Working Conference on Distributed

Applications and Interoperable Systems Chapman & Hall, pages 143-154

September 30-October 2, Cottbus, Germany, 1997.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W

Tuecke. “A Resource Management Architecture for Metacomputing Systems,” In

Proceedings IPPS/SPDP '98 Workshop on Job Scheduling Strategies for Parallel

Processing, pages 62-82, Orlando FL, 1998.

[5] K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman. “Grid Information

Services for Distributed Resource Sharing,” In Proceedings of the Tenth IEEE

International Symposium on High-Performance Distributed Computing (HPDC-10),

IEEE Press, San Francisco CA, August 2001.

[6] D. Diachin, L. Freitag, D. Heath, J. Herzog, W. Michels, and P. Plassmann.

“Remote Engineering Tools for the Design of Pollution Control Systems for

Commercial Boilers,” International Journal of Supercomputer Applications, 10(2)

pages 208-218, 1996.

[7] Event Service Specification, Version 1.1, http://www.omg.org/docs/formal/01-03-

01.pdf.

[8] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith and S. Tuecke.

“A Directory Service for Configuring High-Performance Distributed

Computations,” In Proceedings of 6th IEEE Symposium on High-Performance

Distributed Computing (HPDC-6), pages. 365-375, Portland OR, 1997.

[9] I. Foster and C. Kesselman. Computational Grids, Chapter 2 of “The Grid:

Blueprint for a New Computing Infrastructure,” Morgan-Kaufman, CA 1999.

[10] I. Foster and C. Kesselman. “Globus: A Metacomputing Infrastructure Toolkit,”

International Journal of Supercomputer Applications, 11(2) pages 115-128, 1997.

[11] I. Foster and C. Kesselman, G. Tsudik and S. Tuecke. “A Security Architecture for

Computational Grids,” In Proceedings of 5th ACM Conference on Computer and

Communications Security Conference, pages. 83-92, San Francisco CA, 1998.

http://www.omg.org/docs/formal/01-03-01.pdf
http://www.omg.org/docs/formal/01-03-01.pdf

[12] I. Foster, C. Kesselman, J. Nick and S. Tuecke. “The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration,” In

Proceedings of Open Grid Service Infrastructure WG, Global Grid Forum, 2002.

[13] Global Grid Forum, http://www.gridforum.org/.

[14] R. T. Kouzes, J. D. Myers and W. A. Wulf. “Collaboratories: Doing Science on the

Internet,” In Proceedings of IEEE Computer August 1996 IEEE Fifth Workshops on

Enabling Technology: Infrastructure for Collaborative Enterprises (WET ICE '96),

pages 40-46 Stanford CA, June 19-21 1996,

[15] G. von Laszewski, I Foster, J Gawor and P Lane. “A Java Commodity Grid Kit,”

Concurrency and Computation: Practice and Experience, pages 643-662, Volume

13, Issue 8-9, 2001.

[16] V. Mann and M. Parashar. “Engineering an Interoperable Computational

Collaboratory on the Grid,” Concurrency and Computation: Practice and

Experience, Special Issue on Grid Computing Environments, John Wiley and Sons,

Vol. 14, Issue 13-15, pages. 1569-1593, 2002.

[17] R. Muralidhar and M. Parashar. “An Interactive Object Substrate for Computational

Steering of Distributed Simulations,” In Proceedings of the Ninth IEEE

International Symposium on High-Performance Distributed Computing (HPDC-9),

IEEE Computer Society Press, pages. 304-305, Pittsburgh PA, August 2000.”

[18] Naming Service Specification, Version 1.2, http://www.omg.org/docs/formal/02-09-

02.pdf.

http://www.gridforum.org/
http://www.omg.org/docs/formal/02-09-02.pdf
http://www.omg.org/docs/formal/02-09-02.pdf

[19] G. Olson, D. E. Atkins, R. Clauer, T. Finholt, F. Jahanian, T.L. Killeen, A. Prakash,

and T. Weymouth. “The Upper Atmospheric Research Collaboratory,” ACM

Interactions, Vol. 3, pages. 48-55, May-June 1998.

[20] ORB Interoperability Architecture, http://www.omg.org/docs/formal/02-06-17.pdf.

[21] M. Parashar, G. von Laszewski, S. Verma, J. Gawor, K. Keahey, and N. Rehn. “A

CORBA Commodity Grid Kit,” Concurrency and Computation: Practice and

Experience, Special Issue on Grid Computing Environments, John Wiley and Sons,

Vol. 14, Issue 13-15, pages. 1057-1074, 2002.

[22] Python Globus (pyGlobus), http://www-itg.lbl.gov/gtg/projects/pyGlobus/.

[23] M. Roussos, A. Johnson, J Leigh, C. Barnes, C. Vasilakis, and T. Moher. “The

NICE project: Narrative, Immersive, Constructionist/Collaborative Environments

for Learning in Virtual Reality,” In Proceedings of ED-MEDIA/ED-TELECOM 97,

pages 917-922, Calgary, Canada, June 1997

[24] M. Russell, G. Allen, G. Daues, I. Foster, T. Goodale, E. Seidel, J. Novotny, J.

Shalf, W. Suen, and G von Laszewski. “The Astrophysics Simulation Simulation

Collaboratory A Science Portal Enabling Community Software Development,” In

Proceedings of Tenth IEEE International Symposium on High Performance

Distributed Computing (HPDC-10), pages 207-215, San Francisco CA, August

2001.

[25] Simple Object Access Protocol (SOAP), 1.1 http://www.w3.org/TR/SOAP/.

[26] M. Thomas, S. Mock and J. Boisseau. “Development of the Web toolkits for

Computational Science Portals: The NPACI HotPage,” In Proceedings of 9th IEEE

http://www.omg.org/docs/formal/02-06-17.pdf
http://www-itg.lbl.gov/gtg/projects/pyGlobus/
http://www.w3.org/TR/SOAP/

International Symposium on the High Performance Distributed Computing (HPDC-

9), Pages 308-309, Pittsburgh PA, Aug 14, 2000.

[27] Trading Object Service Specification, Version 1.0,

http://www.omg.org/docs/formal/00-06-27.pdf.

Appendix A

Steps Sequence of Events
1 Client logs in using “Grid Credentials”
2 Client selects the desired action
3 Client selects and configures local/remote Grid and Collaboratory services
4 Client queries MDS services for resources
5 Client is presented with details of a selected resource
6 Client launches applications on selected resource
7 Client presented with an option to interact with an executing application
8 Client presented with a collaborative interaction and steering interface

Figure 9: A snapshot of the Discover portal.

http://www.omg.org/docs/formal/00-06-27.pdf

	Introduction
	The Grid-enabled Middleware Architecture
	Implementation of the Grid-enabled Middleware Substrate
	Operation of the Discover Grid enabled Middleware
	Experimental Evaluation
	Conclusions
	References
	Appendix A

