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Goal
Develop a P2P storage system that enables complex keyword searches, 
guaranteeing that all data elements matching a query will be found with 
reasonable costs in terms of number of messages and queried nodes.

Motivation
• Recent proliferation of P2P storage systems
• The need to retrieve data stored in P2P systems, using partial keywords

System architecture – components
Locality preserving mapping
• Maps data elements to indices based on the document’s keywords
• Use Space-Filling Curves (SFC)

Keyword 1

Keyword 2
Document

A document is a point in a multidimensional 
keyword space.

Space-Filling Curves
• Continuous mapping from d-dimensional space to 1-dimensional space
• Properties: 

• Self-similarity: can be generated recursively
• Digital causality
• Locality preserving: points close together in the 1-dimensional space are 
close together in the d-dimensional space

Clusters on a 3rd order space-filling 
curve (d = 2, n = 2). The colored 
regions represent clusters: 3-cell 
cluster and 16-cell cluster
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Digital causality: points on the segment contained 
in a cell have the first digits identical to the digits 
of the previous approximation of the line in that 
cell
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Note: Cluster = a group of grid points that are consecutively connected by a mapping (or a curve)

The Overlay Network - Chord
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Each node has a unique identifier ranging from 0 
to 2m-1, arranged as a circle modulo 2m, and 
stores the keys that map to the arc of the circle 
between itself and the predecessor node.

Note: SFCs are used to map a document (a point in a d-dimensional space) to 
an index in an 1-dimensional space.

Each node maintains information about at most m neighbors in a finger table, 
the ith finger node is the node that succeeds the current node by at least 2i-1, 
where 1 = i = m.

Operations
• Node Joins: cost O(log2

2N) messages, N is the number of nodes in the system
• Node Departures: cost O(log2

2N) messages
• Node Failures: to maintain the correct state of the system, each node periodically runs a 
stabilization algorithm
• Data Lookup: cost O(log2N) 

The Query Engine
Query = combination of keywords, partial keywords and wildcards. 
Example: (computer, net*), (comp, *)

Query processing
- Translate the keyword query to relevant 
clusters of the SFC-based index space
- Query the appropriate nodes in the overlay 
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Regions in the 2-dimensional space defined 
by queries (000, *) and (1*, 0*). The vertical 
region contains 3 clusters.

Note: the number of clusters can be large

Query optimization
• Not all the clusters that correspond to a query represent valid keywords
• Use the self-similarity property of SFC – clusters can be generated recursively, 
their construction can be viewed as constructing a tree

Experimental Evaluation

Load Balancing

Evaluating the Query Engine

Evaluating the Load Balancing Mechanisms

Future work
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Recursive refinement of the query (011, *). (a) one cluster on the 
first order Hilbert curve, (b) two clusters on the second order 
Hilbert curve, (c) four clusters on the third order Hilbert curve.
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Recursive refinement of the query (011, *) viewed as a tree. Each 
node is a cluster, and the bold characters are the cluster’s prefixes.
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Embedding the leftmost tree path (solid 
arrows) and the rightmost path (dashed 
arrows) onto the overlay network 
topology.
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• The optimization consists in 
pruning nodes from the tree 
during the construction phase. 
The tree is embedded into the 
ring topology and the sub-trees 
that “sink” into one node of 
the overlay are pruned.

• The d-dimensional keyword space is sparsely populated, and data elements 
form clusters in this space rather than being uniformly distributed.
• Hilbert SFC-based index space preserves keyword locality => it will be 
sparsely populated with clusters => the nodes cannot be uniformly distributed in 
the node identifier space.

The distribution of the keys at nodes 
when using only the load balancing at 
node join technique.
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The distribution of the keys at 
nodes when using both the load 
balancing at node join technique, 
and the local load balancing.
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The distribution of the keys in an index space 
with 106 keys. The index space was partitioned 
into 5000 intervals. The Y-axis represents the 
number of keys per interval.
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Load Balancing Mechanisms
• At node join: try to find the least crowded region of the system, O (n*log N) 
• Local load balancing: exchange load information with neighbors, O (log2 N)
• Virtual nodes: migrate virtual nodes from heavily loaded nodes to lightly 
loaded ones

• Improving the system’s availability and response time (caching and redundancy)
• Making the system fault tolerant
• Developing new overlay topologies
• Address issues like hot-spots, ranking the documents, security

Experiment: 2D keyword space, the system size increases from 1000 nodes to 
5400 nodes, and the number of keys stored increases from 2*105 to 106.
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Results for a 5400 node 
system and 106 keys.

Results for queries with one keyword or partial keyword, e.g. (computer, *).

Results for queries with two keywords or partial keywords (at least one partial keyword), e.g. (comp*, net*)


