
RUTGERS UNIVERSITY TASSL - The Applied Software Systems Laboratory

A Dimension Reducing Indexing Scheme for Guaranteed Keyword Searches in
Peer-to-Peer Storage Systems

Cristina Schmidt Manish Parashar
TASSL, Department of Electrical and Computer Engineering, Rutgers University

Goal
Develop a P2P storage system that enables complex keyword searches,
guaranteeing that all data elements matching a query will be found with
reasonable costs in terms of number of messages and queried nodes.

Motivation
• Recent proliferation of P2P storage systems
• The need to retrieve data stored in P2P systems, using partial keywords

System architecture – components
Locality preserving mapping
• Maps data elements to indices based on the document’s keywords
• Use Space-Filling Curves (SFC)

Keyword 1

Keyword 2
Document

A document is a point in a multidimensional
keyword space.

Space-Filling Curves
• Continuous mapping from d-dimensional space to 1-dimensional space
• Properties:

• Self-similarity: can be generated recursively
• Digital causality
• Locality preserving: points close together in the 1-dimensional space are
close together in the d-dimensional space

Clusters on a 3rd order space-filling
curve (d = 2, n = 2). The colored
regions represent clusters: 3-cell
cluster and 16-cell cluster

.00

.01 .10

.11

.1

.0

.1.0

.00

.01

.10

.11

Digital causality: points on the segment contained
in a cell have the first digits identical to the digits
of the previous approximation of the line in that
cell

.00 .01 .10 .11

.0000 .0001

.0011

.0100

.0101 .0110

.0111 .1000

.1001 .1010

.1011

.1100
.1101

.1110 .1111

.0010

Note: Cluster = a group of grid points that are consecutively connected by a mapping (or a curve)

The Overlay Network - Chord
0

3

8
10

11
Each node has a unique identifier ranging from 0
to 2m-1, arranged as a circle modulo 2m, and
stores the keys that map to the arc of the circle
between itself and the predecessor node.

Note: SFCs are used to map a document (a point in a d-dimensional space) to
an index in an 1-dimensional space.

Each node maintains information about at most m neighbors in a finger table,
the ith finger node is the node that succeeds the current node by at least 2i-1,
where 1 = i = m.

Operations
• Node Joins: cost O(log2

2N) messages, N is the number of nodes in the system
• Node Departures: cost O(log2

2N) messages
• Node Failures: to maintain the correct state of the system, each node periodically runs a
stabilization algorithm
• Data Lookup: cost O(log2N)

The Query Engine
Query = combination of keywords, partial keywords and wildcards.
Example: (computer, net*), (comp, *)

Query processing
- Translate the keyword query to relevant
clusters of the SFC-based index space
- Query the appropriate nodes in the overlay
network for data-elements000 001 010 011 100 101 110 111

111

110

101

100

011

010

001

000

(1*, 0*)(000, *)

Regions in the 2-dimensional space defined
by queries (000, *) and (1*, 0*). The vertical
region contains 3 clusters.

Note: the number of clusters can be large

Query optimization
• Not all the clusters that correspond to a query represent valid keywords
• Use the self-similarity property of SFC – clusters can be generated recursively,
their construction can be viewed as constructing a tree

Experimental Evaluation

Load Balancing

Evaluating the Query Engine

Evaluating the Load Balancing Mechanisms

Future work

000 001 010 011 100 101 110 111

111

110

101

100

011

010

001

000

(a) (b) (c)
Recursive refinement of the query (011, *). (a) one cluster on the
first order Hilbert curve, (b) two clusters on the second order
Hilbert curve, (c) four clusters on the third order Hilbert curve.

0 1

0

1

1100

01 10

00

00 01 10 11

01

10

11

0000 0001

0011

0100

0101 0110

0111 1000

1001 1010

1011

1100
1101

1110 1111

0010

Recursive refinement of the query (011, *) viewed as a tree. Each
node is a cluster, and the bold characters are the cluster’s prefixes.

0

00,
01

0001,
0010

0110,
0111

000101,
000110

001001,
001010

011111 011010,
011011,
011100

000000

Embedding the leftmost tree path (solid
arrows) and the rightmost path (dashed
arrows) onto the overlay network
topology.

000100

001001

001111

011110

111000
0

00

0001

0110

01

• The optimization consists in
pruning nodes from the tree
during the construction phase.
The tree is embedded into the
ring topology and the sub-trees
that “sink” into one node of
the overlay are pruned.

• The d-dimensional keyword space is sparsely populated, and data elements
form clusters in this space rather than being uniformly distributed.
• Hilbert SFC-based index space preserves keyword locality => it will be
sparsely populated with clusters => the nodes cannot be uniformly distributed in
the node identifier space.

The distribution of the keys at nodes
when using only the load balancing at
node join technique.

0

300

600

900

1200

1500

1800

2100

1 501 1001 1501 2001 2501 3001 3501 4001 4501

Nodes in the system

N
um

be
r

of
 k

ey
s

The distribution of the keys at
nodes when using both the load
balancing at node join technique,
and the local load balancing.

0

300

600

900

1200

1500

1800

2100

1 501 1001 1501 2001 2501 3001 3501 4001 4501

Nodes in the system

N
um

be
r

of
 k

ey
s

The distribution of the keys in an index space
with 106 keys. The index space was partitioned
into 5000 intervals. The Y-axis represents the
number of keys per interval.

0

300

600

900

1200

1500

1800

2100

1 501 1001 1501 2001 2501 3001 3501 4001 4501

The index space (intervals)

N
um

be
r

of
 k

ey
s

Load Balancing Mechanisms
• At node join: try to find the least crowded region of the system, O (n*log N)
• Local load balancing: exchange load information with neighbors, O (log2 N)
• Virtual nodes: migrate virtual nodes from heavily loaded nodes to lightly
loaded ones

• Improving the system’s availability and response time (caching and redundancy)
• Making the system fault tolerant
• Developing new overlay topologies
• Address issues like hot-spots, ranking the documents, security

Experiment: 2D keyword space, the system size increases from 1000 nodes to
5400 nodes, and the number of keys stored increases from 2*105 to 106.

0

5

10

15

20

25

30

35

1050 2150 3200 4300 5400

Number of nodes

N
u

m
b

er
 o

f p
ro

ce
ss

in
g

no

de
s

query 1 query 2 query 3
query 4 query 5

0
5

10
15

20

25

30

1050 2150 3200 4300 5400

Number of nodes

N
u

m
b

er
 o

f
d

at
a

n
o

d
es

query 1 query 2 query 3
query 4 query 5

0
50

100

150

200
250

300

1050 2150 3200 4300 5400
Number of nodes

N
u

m
b

e
r

o
f

p
ro

c
e

s
s

in
g

 n
o

d
e

s
query 1 query 2 query 3
query 4 query 5 query 6

0
50

100
150
200
250
300

1050 2150 3200 4300 5400
Number of nodes

N
u

m
b

e
r

o
f

d
a
ta

n

o
d

e
s

query 1 query 2 query 3
query 4 query 5 query 6

0

1000

2000

3000

4000

1050 2150 3200 4300 5400
Number of nodes

N
u

m
b

e
r

o
f

m
a
tc

h
e
s

query 1 query 2 query 3
query 4 query 5 query 6

0

500

1000

1500

2000

1050 2150 3200 4300 5400
Number of nodes

N
u

m
b

e
r

o
f

m
a
tc

h
e
s

query 1 query 2 query 3
query 4 query 5

0
600

1200
1800
2400
3000
3600
4200
4800
5400

160 587 714 1227 2680 3676
Number of matches for queries

Routing nodes

Messages

Processing nodes

Data nodes

Results for a 5400 node
system and 106 keys.

Results for queries with one keyword or partial keyword, e.g. (computer, *).

Results for queries with two keywords or partial keywords (at least one partial keyword), e.g. (comp*, net*)

