Parallel Numerical Simulations with MPI and SGE

Unisys Scholars Project Paul Arias

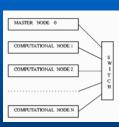
Overview

- Lengthy Computer Simulations

 - Engineering Computational DesignScientific High Performance ComputingFinancial Computing
- What is Parallel Computing
 - Message Passing InterfaceOpen Source Solutions
- What is Sun Grid Engine
 - Resource manager
 - Costs
- Why use either

Simulations That Take Time

- Programs need resources to run
 - Large programs require more memory than others
 - Output of executed program can exceed available memory
 - Need to organize and efficiently use resources of computational clusters
- Large Networks of Nodes
 - System needs organization
 - Needs Queue for managing large number of jobs



Implementation

- Create a computational cluster for use on parallel computing
- Install MPI onto Linux machines
- Install SGE onto cluster machines

Parallel Computing Structure

- Parallel computing environment
 - Work with multiple processor environment
 - Programmer's responsibility to write MPI code
- SGE manages resources efficiently
- Higher productivity when system allows tight control of distributed parallel processes

MPI Software Available

- Commercial versions
 - ChaMPion/Pro
 - Alpha Data MPI
 - Hitachi MPI
 - HP MPI
 - MPI/SX

- Open Source versions
 - MPICH
 - DISI
 - LAM/MPI
 - MPI/FM
 - OPEN_MP

Our Choices

- Use MPICH
 - Developed by Argonne National Laboratory
 - Readily available with instructions on how to compile
 - Open source
 - Can be used with various platforms, including RedHat Linux 9.0
 - Other newer commercial releases only worked on certain platforms

Configuring MPICH

- Working knowledge of Linux systems administration
 - Network Information Services
 - Network File Transfer
 - RSH
 - A bit of shell scripting
 - "Rsync" for synchronizing installation

Configuring MPICH (continued)

- Compilation of code and configuration
 - Use Modified Configuration Script #!/bin/bash export RSHCOMMAND=rsh ./configure -comm=shared Note shared memory usage

Configuring MPICH (Continued)

Network Information Services

- Required for use with MPI and for parallel environment.
- Synchronize user information between the nodes; sharing accounts over NIS. Highly efficient when large number of users
- Can also use Lightweight Directory Access Protocol or Synchronize passwords files. Usually done with few number of users.

Configuring MPICH (Continued)

Network File System

- Also a requirement for MPI operation and for parallel environment
 - Executable need only be present in one file system on one computer then be mounted to the other computers
 NFS is slow, advance cluster used PVFS or Luster for sharing files
- Using Automount
 - Shares particular system file over nodes
 - Unlike Standard mount, Automount provides on demand form of mounting file system and then un-mounts automatically

Configuring MPICH (Continued)

- RSH Remote SHell client
 - Managing nodes
 - Starts parallel processes
 - Modify /etc/hosts.equiv for rsh between computational nodes

Problems

- Could not kill the process easily
 - "ctrl+C" will end only one process, but since the program is running on multiple processor must kill each independently
 - Not very clean

Solution: Use SGE

- SGE will organize resources and also make execution and termination of programs more manageable in multi-user and multi-process environment
- Add simplicity to the user. SGE will take the file, find available resources and submit them, making the process of running parallel simulation more user friendly

Sun Grid Engine

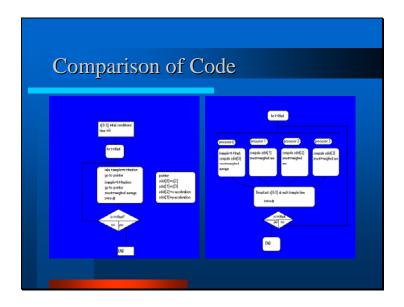
- Software Available
 - OpenPBS
 - MauiME
 - Sun Grid Engine 5.3
- Used SunGrid Engine
 - Sun is most efficient
 - Forerunner in Grid Technology

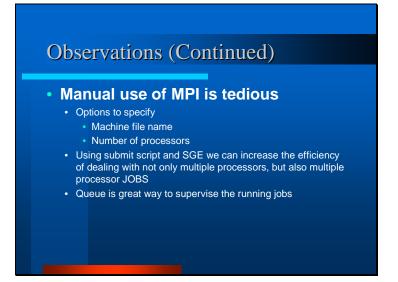
Sun Grid Engine Configuration

Configure master node/administrator and then configure the computational

- Requires setting up queue for all of the computational nodes
- Specify number of processors in each node
- Need to specify parallel environment to MPI

SGE Configuration |tight| (continued)


- Modifying the startmpi.sh script
 - Must make sure that the mpi local file path is correct
 - Must also specify location of the SGE local files
- Modifying the stopmpi.sh script
 - Must make sure that the mpi local file path is correct
 - Must also specify location of the SGE local files


SGE Submission of Executable

- Use mpi_submi.sh
 - Name if file is specified in shell script
 - myjob=rkftwobody
 - Single line initiates MPI and submits the job to the queue system
 - SGE_ROOT/mpi/watchMPI.sh &
 - \$MPIR_HOME/bin/mpirun -np \$NSLOTS -machinefile \$TMPDIR/machines \$myjob

Observations

- Program ran slower as parallel simulation
 - · Removal of pointer
 - Addition of many lines of MPI_Bcast
 - Shows that communication between processors slows things down
- MPI not best for System of Ordinary Differential Equations

Conclusion

- MPI is a powerful tool for producing scientific data from computer simulations
- Software that uses MPI
 - FLUENT (CFD)
 - GASP (Gas Dynamics)
 - AMBER (Molecular Dynamics)
 - NAMD (Molecular Dynamics)
- Areas of Research where MPI is used
 - · Automotive design
 - Financial modeling
 - Computational physics
 - Computational Fluid Dynamics
 - Materials Research

Conclusion (continued)

- Sun Grid Engine does an exemplary job of managing the resources available in a computational cluster
- As more and more advances in parallel computing with multiple processor nodes and network parallel computing continues, development of Grid Engine technology will become essential in managing these resources

Special Thanks

Dr. David Gardiner

Vice President, Architecture and Technology, Unisys Corporation

Dr. Doyle Knight

Professor, Department of Mechanical and Aerospace Engineering

Dr. Alexei Kotelnikov

Systems Programmer and Administrator, Engineering Computing Services

Mr. Amit Freeman

Department of Electrical and Computer Engineering

My Fellow 2004-2005 Unisys Scholars

Ms. Diane Palla

Mr. Malik Khan

Mr. Lucas Machado