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Abstract

A general technique for the recovery of signi�cant

image features is presented. The technique is based on

the mean shift algorithm, a simple nonparametric pro-

cedure for estimating density gradients. Drawbacks of

the current methods (including robust clustering) are

avoided. Feature space of any nature can be processed,

and as an example, color image segmentation is dis-

cussed. The segmentation is completely autonomous,

only its class is chosen by the user. Thus, the same

program can produce a high quality edge image, or pro-

vide, by extracting all the signi�cant colors, a prepro-

cessor for content-based query systems. A 512 � 512

color image is analyzed in less than 10 seconds on a

standard workstation. Gray level images are handled

as color images having only the lightness coordinate.

1 Introduction

Feature space analysis is a widely used tool for solv-

ing low-level image understanding tasks. Given an im-

age, feature vectors are extracted from local neighbor-

hoods and mapped into the space spanned by their

components. Signi�cant features in the image then

correspond to high density regions in this space. Fea-

ture space analysis is the procedure of recovering the

centers of the high density regions, i.e., the represen-

tations of the signi�cant image features. Histogram

based techniques, Hough transform are examples of

the approach.

When the number of distinct feature vectors is

large, the size of the feature space is reduced by group-

ing nearby vectors into a single cell. A discretized fea-

ture space is called an accumulator. Whenever the size

of the accumulator cell is not adequate for the data,

serious artifacts can appear. The problem was exten-

sively studied in the context of the Hough transform,

e.g. [5]. Thus, for satisfactory results a feature space

should have continuous coordinate system. The con-

tent of a continuous feature space can be modeled as

a sample from a multivariate, multimodal probability

distribution. Note that for real images the number of

modes can be very large, of the order of tens.

The highest density regions correspond to clusters

centered on the modes of the underlying probability

distribution. Traditional clustering techniques [6], can

be used for feature space analysis but they are reliable

only if the number of clusters is small and known a

priori. Estimating the number of clusters from the

data is computationally expensive and not guaranteed

to produce satisfactory result.

A much too often used assumption is that the indi-

vidual clusters obey multivariate normal distributions,

i.e., the feature space can be modeled as a mixture of

Gaussians. The parameters of the mixture are then

estimated by minimizing an error criterion. For exam-

ple, a large class of thresholding algorithms are based

on the Gaussian mixture model of the histogram, e.g.

[11]. However, there is no theoretical evidence that an

extracted normal cluster necessarily corresponds to a

signi�cant image feature. On the contrary, a strong

artifact cluster may appear when several features are

mapped into partially overlapping regions.

Nonparametric density estimation [4, Chap. 6]

avoids the use of the normality assumption. The two

families of methods, Parzen window, and k-nearest

neighbors, both require additional input information

(type of the kernel, number of neighbors). This infor-

mation must be provided by the user, and for multi-

modal distributions it is di�cult to guess the optimal

setting.

Nevertheless, a reliable general technique for fea-

ture space analysis can be developed using a simple

nonparametric density estimation algorithm. In this

paper we propose such a technique whose robust be-

havior is superior to methods employing robust esti-

mators from statistics.

2 Requirements for Robustness

Estimation of a cluster center is called in statistics

the multivariate location problem. To be robust, an

estimator must tolerate a percentage of outliers, i.e.,

data points not obeying the underlying distribution

1



of the cluster. Numerous robust techniques were pro-

posed [10, Sec. 7.1], and in computer vision the most

widely used is the minimum volume ellipsoid (MVE)

estimator proposed by Rousseeuw [10, p. 258].

The MVE estimator is a�ne equivariant (an a�ne

transformation of the input is passed on to the es-

timate) and has high breakdown point (tolerates up

to half the data being outliers). The estimator �nds

the center of the highest density region by searching

for the minimal volume ellipsoid containing at least

h data points. The multivariate location estimate is

the center of this ellipsoid. To avoid combinatorial

explosion a probabilistic search is employed. Let the

dimension of the data be p. A small number of (p+1)-

tuple of points are randomly chosen. For each (p+1)-

tuple the mean vector and covariance matrix are com-

puted, de�ning an ellipsoid. The ellipsoid is in
ated

to include h points, and the one having the minimum

volume provides the MVE estimate.

Based on MVE, a robust clustering technique with

applications in computer vision was proposed in [7].

The data is analyzed under several \resolutions" by

applying the MVE estimator repeatedly with h values

representing �xed percentages of the data points. The

best cluster then corresponds to the h value yielding

the highest density inside the minimum volume ellip-

soid. The cluster is removed from the feature space,

and the whole procedure is repeated till the space is

not empty. The robustness of MVE should ensure

that each cluster is associated with only one mode of

the underlying distribution. The number of signi�cant

clusters is not needed a priori.

The robust clustering method was successfully em-

ployed for the analysis of a large variety of feature

spaces, but was found to become less reliable once

the number of modes exceeded ten. This is mainly

due to the normality assumption embedded into the

method. The ellipsoid de�ning a cluster can be also

viewed as the high con�dence region of a multivari-

ate normal distribution. Arbitrary feature spaces are

not mixtures of Gaussians and constraining the shape

of the removed clusters to be elliptical can introduce

serious artifacts. The e�ect of these artifacts propa-

gates as more and more clusters are removed. Fur-

thermore, the estimated covariance matrices are not

reliable since are based on only p + 1 points. Subse-

quent postprocessing based on all the points declared

inliers cannot fully compensate for an initial error.

To be able to correctly recover a large number of

signi�cant features, the problem of feature space anal-

ysis must be solved in context. In image understand-

ing tasks the data to be analyzed originates in the

image domain. That is, the feature vectors satisfy ad-

ditional, spatial constraints. While these constraints

are indeed used in the current techniques, their role is

mostly limited to compensating for feature allocation

errors made during the independent analysis of the

feature space. To be robust the feature space analysis

must fully exploit the image domain information.

As a consequence of the increased role of image

domain information the burden on the feature space

analysis can be reduced. First all the signi�cant fea-

tures are extracted, and only after then are the clusters

containing the instances of these features recovered.

The latter procedure uses image domain information

and avoids the normality assumption.

Signi�cant features correspond to high density re-

gions and to locate these regions a search window must

be employed. The number of parameters de�ning

the shape and size of the window should be minimal,

and therefore whenever it is possible the feature space

should be isotropic. A space is isotropic if the distance

between two points is independent on the location of

the point pair. The most widely used isotropic space is

the Euclidean space, where a sphere, having only one

parameter (its radius) can be employed as search win-

dow. The isotropy requirement determines the map-

ping from the image domain to the feature space. If

the isotropy condition cannot be satis�ed, a Maha-

lanobis metric should be de�ned from the statement

of the task.

We conclude that robust feature space analysis re-

quires a reliable procedure for the detection of high

density regions. Such a procedure is presented in the

next section.

3 Mean Shift Algorithm

A simple, nonparametric technique for estimation

of the density gradient was proposed in 1975 by Fuku-

naga and Hostetler [4, p. 534]. The idea was recently

generalized by Cheng [2].

Assume, for the moment, that the probability den-

sity function p(x) of the p-dimensional feature vectors

x is unimodal. This condition is for sake of clarity

only, later will be removed. A sphere Sx of radius

r, centered on x contains the feature vectors y such

that k y � x k � r. The expected value of the vector

z = y � x, given x and Sx is

� = E[ zjSx ] =

Z
Sx

(y � x)p(yjSx)dy (1)

=

Z
Sx

(y � x)
p(y)

p(y 2 Sx)
dy
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If Sx is su�ciently small we can approximate

p(y 2 Sx) = p(x)VSx where VSx = c � rp (2)

is the volume of the sphere. The �rst order approxi-

mation of p(y) is

p(y) = p(x) + (y � x)Trp(x) (3)

where rp(x) is the gradient of the probability density
function in x. Then

� =

Z
Sx

(y � x)(y � x)T

VSx

rp(x)
p(x)

dy (4)

since the �rst term term vanishes. The value of the

integral is [4, p. 535]

� =
r2

p+ 2

rp(x)
p(x)

(5)

or

E[x j x 2 Sx ]� x =
r2

p+ 2

rp(x)
p(x)

(6)

Thus, the mean shift vector, the vector of di�erence

between the local mean and the center of the window,

is proportional to the gradient of the probability den-

sity at x. The proportionality factor is reciprocal to

p(x). This is bene�cial when the highest density re-

gion of the probability density function is sought. Such

region corresponds to large p(x) and small rp(x), i.e.,
to small mean shifts. On the other hand, low den-

sity regions correspond to large mean shifts (ampli�ed

also by small p(x) values). The shifts are always in

the direction of the probability density maximum, the

mode. At the mode the mean shift is close to zero.

This property can be exploited in a simple, adaptive

steepest ascent algorithm.

Mean Shift Algorithm

1. Choose the radius r of the search window.

2. Choose the initial location of the window.

3. Compute the mean shift vector and translate the

search window by that amount.

4. Repeat till convergence.

To illustrate the ability of the mean shift algorithm,

200 data points were generated from two normal distri-

butions, both having unit variance. The �rst hundred

points belonged to a zero-mean distribution, the sec-

ond hundred to a distribution having mean 3.5. The

data is shown as a histogram in Figure 1. It should be

emphasized that the feature space is processed as an

ordered one-dimensional sequence of points, i.e., it is

continuous. The mean shift algorithm starts from the

location of the mode detected by the one-dimensional

MVE mode detector, i.e., the center of the shortest

rectangular window containing half the data points

[10, Sec. 4.2]. Since the data is bimodal with nearby

modes, the mode estimator fails and returns a loca-

tion in the trough. The starting point is marked by

the cross at the top of Figure 1.
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Figure 1: An example of the mean shift algorithm.

In this synthetic data example no a priori informa-

tion is available about the analysis window. Its size

was taken equal to that returned by the MVE esti-

mator, 3.2828. Other, more adaptive strategies for

setting the search window size can also be de�ned.

Table 1: Evolution of Mean Shift Algorithm

Initial Mode Initial Mean Final Mean

1.5024 1.4149 0.1741

In Table 1 the initial values and the �nal location,

shown with a star at the top of Figure 1, are given.

The mean shift algorithm is the tool needed for fea-

ture space analysis. The unimodality condition can

be relaxed by randomly choosing the initial location

of the search window. The algorithm then converges

to the closest high density region. The outline of a

general procedure is given below.

Feature Space Analysis

1. Map the image domain into the feature space.

2. De�ne an adequate number of search windows at

random locations in the space.

3. Find the high density region centers by applying

the mean shift algorithm to each window.

4. Validate the extracted centers with image domain

constraints to provide the feature palette.

5. Allocate, using image domain information, all the

feature vectors to the feature palette.

The procedure is very general and applicable to any

feature space. In the next section we describe a color

image segmentation technique developed based on this

outline.
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4 Color Image Segmentation

Image segmentation, partioning the image into ho-

mogeneous regions, is a challenging task. The richness

of visual information makes bottom-up, solely image

driven approaches always prone to errors. To be re-

liable, the current systems must be large and incor-

porate numerous ad-hoc procedures, e.g. [1]. The

paradigms of gray level image segmentation (pixel-

based, area-based, edge-based) are also used for color

images. In addition, the physics-based methods take

into account information about the image formation

processes as well. See, for example, the reviews [8, 12].

The proposed segmentation technique does not con-

sider the physical processes, it uses only the given

image, i.e., a set of RGB vectors. Nevertheless, can

be easily extended to incorporate supplementary in-

formation about the input. As homogeneity criterion

color similarity is used.

Since perfect segmentation cannot be achieved

without a top-down, knowledge driven component, a

bottom-up segmentation technique should

� only provide the input into the next stage where

the task is accomplished using a priori knowledge

about its goal; and

� eliminate, as much as possible, the dependence on

user set parameter values.

Segmentation resolution is the most general param-

eter characterizing a segmentation technique. While

this parameter has a continuous scale, three important

classes can be distinguished.

Undersegmentation corresponds to the lowest res-

olution. Homogeneity is de�ned with a large tol-

erance margin and only the most signi�cant colors

are retained for the feature palette. The region

boundaries in a correctly undersegmented image

are the dominant edges in the image.

Oversegmentation corresponds to intermediate res-

olution. The feature palette is rich enough that

the image is broken into many small regions from

which any sought information can be assembled

under knowledge control. Oversegmentation is

the recommended class when the goal of the task

is object recognition.

Quantization corresponds to the highest resolution.

The feature palette contains all the important col-

ors in the image. This segmentation class became

important with the spread of image databases,

e.g., [3, 9]. The full palette, possibly together

with the underlying spatial structure, is essential

for content-based queries.

The proposed color segmentation technique operates

in any of the these three classes. The user only chooses

the desired class, the speci�c operating conditions are

derived automatically by the program.

Images are usually stored and displayed in the RGB

space. However, to ensure the isotropy of the feature

space, a uniform color space with the perceived color

di�erences measured by Euclidean distances should

be used. We have chosen the L�u�v� space [13, Sec.

3.3.9], whose coordinates are related to the RGB val-

ues by nonlinear transformations. The daylight stan-

dard D65 was used as reference illuminant. The chro-

matic information is carried by u� and v�, while the

lightness coordinate L� can be regarded as the relative

brightness. Psychophysical experiments show that

L�u�v� space may not be perfectly isotropic [13, p.

311], however, it was found satisfactory for image un-

derstanding applications. The image capture/display

operations also introduce deviations which are most

often neglected.

The steps of color image segmentation are presented

below. The acronyms ID and FS stand for image do-

main and feature space respectively. All feature space

computations are performed in the L�u�v� space.

1. [FS] De�nition of the segmentation parameters.

The user only indicates the desired class of segmen-

tation. The class de�nition is translated into three

parameters

� the radius of the search window, r;

� the smallest number of elements required for a

signi�cant color, Nmin;

� the smallest number of contiguous pixels required

for a signi�cant image region, Ncon.

The size of the search window determines the resolu-

tion of the segmentation, smaller values corresponding

to higher resolutions. The subjective (perceptual) def-

inition of a homogeneous region seems to depend on

the \visual activity" in the image. Within the same

segmentation class an image containing large homoge-

neous regions should be analyzed at higher resolution

than an image with many textured areas. The sim-

plest measure of the \visual activity" can be derived

from the global covariance matrix. The square root

of its trace, �, is related to the power of the signal

(image). The radius r is taken proportional to �. The

rules de�ning the three segmentation class parameters

are given in Table 2. These rules were used in the seg-

mentation of a large variety images, ranging from sim-

ple blood cells to complex indoor and outdoor scenes.

When the goal of the task is well de�ned and/or all

the images are of the same type, the parameters can

be �ne tuned.
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Table 2: Segmentation Class Parameters

Segmentation Parameter

Class r Nmin Ncon

Undersegmentation 0:4� 400 10

Oversegmentation 0:3� 100 10

Quantization 0:2� 50 0

2. [ID+FS] De�nition of the search window.

The initial location of the search window in the feature

space is randomly chosen. To ensure that the search

starts close to a high density region several location

candidates are examined. The random sampling is

performed in the image domain and a few, M = 25,

pixels are chosen. For each pixel, the mean of its 3�3

neighborhood is computed and mapped into the fea-

ture space. If the neighborhood belongs to a larger

homogeneous region, with high probability the loca-

tion of the search window will be as wanted. To fur-

ther increase this probability, the window containing

the highest density of feature vectors is selected from

the M candidates.

3. [FS] Mean shift algorithm.

To locate the closest mode the mean shift algorithm

is applied to the selected search window. Convergence

is declared when the magnitude of the shift becomes

less than 0.1.

4. [ID+FS] Removal of the detected feature.

The pixels yielding feature vectors inside the search

window at its �nal location are discarded from both

domains. Additionally, their 8-connected neighbors

in the image domain are also removed independent of

the feature vector value. These neighbors can have

\strange" colors due to the image formation process

and their removal cleans the background of the fea-

ture space. Since all pixels are reallocated in Step 7,

possible errors will be corrected.

5. [ID+FS] Iterations.

Repeat Steps 2 to 4, till the number of feature vectors

in the selected search window no longer exceeds Nmin.

6. [ID] Determining the initial feature palette.

In the feature space a signi�cant color must be based

on minimum Nmin vectors. Similarly, to declare a

color signi�cant in the image domain more than Nmin

pixels of that color should belong to a connected com-

ponent. From the extracted colors only those are re-

tained for the initial feature palette which yield at

least one connected component in the image of size

larger than Nmin. The neighbors removed at Step 4.

are also considered when de�ning the connected com-

ponents Note that the threshold is not Ncon which is

used only at the postprocessing stage.

7. [ID+FS] Determining the �nal feature palette.

The initial feature palette provides the colors allowed

when segmenting the image. If the palette is not rich

enough the segmentation resolution was not chosen

correctly and should be increased to the next class. All

the pixel are reallocated based on this palette. First,

the pixels yielding feature vectors inside the search

windows at their �nal location are considered. These

pixels are allocated to the color of the window center

without taking into account image domain informa-

tion. The windows are then in
ated to double volume

(their radius is multiplied with 3
p
2). The newly in-

corporated pixels are retained only if they have at

least one neighbor which was already allocated to

that color. The mean of the feature vectors mapped

into the same color is the value retained for the �nal

palette. At the end of the allocation procedure a small

number of pixels can remain unclassi�ed. These pixels

are allocated to the closest color in the �nal feature

palette.

8. [ID+FS] Postprocessing.

This step depends on the goal of the task. The sim-

plest procedure is the removal from the image of all

small connected components of size less than Ncon.

These pixels are allocated to the majority color in

their 3 � 3 neighborhood, or in the case of a tie to

the closest color in the feature space.

In Figure 2 the house image containing 9603 dif-

ferent colors is shown. The segmentation results for

the three classes and the region boundaries are given

in Figure 5a{f. Note that undersegmentation yields

a good edge map, while in the quantization class the

original image is closely reproduced with only 37 col-

ors. A second example using the oversegmentation

class is shown in Figure 3. Note the details on the

fuselage.

5 Discussion

The simplicity of the basic computational mod-

ule, the mean shift algorithm, enables the feature

space analysis to be accomplished very fast. From

a 512 � 512 pixels image a palette of 10{20 features

can be extracted in less than 10 seconds on a Ultra

SPARC 1 workstation. To achieve such a speed the

implementation was optimized and whenever possi-

ble, the feature space (containing fewer distinct el-

ements than the image domain) was used for array

scanning; lookup tables were employed instead of fre-
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Figure 2: The house image, 255 � 192 pixels, 9603

colors.

quently repeated computations; direct addressing in-

stead of nested pointers; �xed point arithmetic instead

of 
oating point calculations; partial computation of

the Euclidean distances, etc.

The analysis of the feature space is completely au-

tonomous, due to the extensive use of image domain

information. All the examples in this paper, and

dozens more not shown here, were processed using

the parameter values given in Table 2. Recently Zhu

and Yuille [14] described a segmentation technique

incorporating complex global optimization methods

(snakes, minimum description length) with sensitive

parameters and thresholds. To segment a color im-

age over a hundred iterations were needed. When the

images used in [14] were processed with the technique

described in this paper, the same quality results were

obtained unsupervised and in less than a second. Fig-

ure 4 shows one of the results, to be compared with

Figure 14h in [14]. The new technique can be used un-

modi�ed for segmenting gray level images, which are

handled as color images with only the L� coordinates.

In Figure 6 an example is shown.

The result of segmentation can be further re�ned

by local processing in the image domain. For exam-

ple, robust analysis of the pixels in a large connected

component yields the inlier/outlier dichotomy which

then can be used to recover discarded �ne details.

In conclusion, we have presented a general tech-

nique for feature space analysis with applications in

many low-level vision tasks like thresholding, edge de-

tection, segmentation. The nature of the feature space

is not restricted, currently we are working on apply-

ing the technique to range image segmentation, Hough

transform and optical 
ow decomposition.

(a)

(b)

Figure 3: Color image segmentation example. (a)

Original image, 512 � 512 pixels, 77041 colors. (b)

Oversegmentation: 21/21 colors.

(a) (b)

Figure 4: Performance comparison. (a) Original im-

age, 116� 261 pixels, 200 colors. (b) Undersegmenta-

tion: 5/4 colors. Region boundaries.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: The three segmentation classes for the house image. The right column shows the region boundaries.

(a)(b) Undersegmentation. Number of colors extracted initially and in the feature palette: 8/8. (c)(d) Overseg-

mentation: 24/19 colors. (e)(f) Quantization: 49/37 colors.
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(a)

(b)

(c)

Figure 6: Gray level image segmentation example. (a)

Original image, 256� 256 pixels. (b) Undersegmenta-

tion: 5 gray levels. (c) Region boundaries.
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