Automatic Image Analysis of Histopathology Specimens Using Concave Vertex Graph

Lin Yang(1,3), Oncel Tuzel(2), Peter Meer(1), and David J. Foran(3)

(1)Department of Electrical and Computer Engineering
(2)Department of Computer Science
Rutgers University, Piscataway, NJ 08854, USA

(3)BioImaging Laboratory, Department of Pathology and Laboratory Medicine
UMDNJ-Robert Wood Johnson Medical School
Piscataway, NJ 08855, USA

Automatic image analysis of histopathology specimens would help the early detection of blood cancer. The first step for automatic image analysis is segmentation. However, touching cells bring the difficulty for traditional segmentation algorithms. In this paper, we propose a novel algorithm which can reliably handle touching cells segmentation. Robust estimation and color active contour models are used to delineate the outer boundary. Concave points on the boundary and inner edges are automatically detected. A concave vertex graph is constructed from these points and edges. By minimizing a cost function based on morphological characteristics, we recursively calculate the optimal path in the graph to separate the touching cells. The algorithm is computationally efficient and has been tested on two large clinical dataset which contain 207 images and 3898 images respectively. Our algorithm provides better results than other studies reported in the recent literature.

11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) , New York City, USA, September 2008; Springer, LNCS 5241, Part I, 833-841, 2008.

Return to Research: Content-based retrieval       Return to List of Publications
Download the paper