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hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It
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scale and transient bio-heat transferin the sec/min meso-time
scale.

1. Introduction

Many of the clinical procedures with lasers use the so-called
non-ablative thermal mode of laser-tissue interaction [1,2];
that is, tissue is heated and irreversibly damaged by absorp-
tion of the laser energy. The degree and extent of tissue
thermal damage depends on the rate of heat generation and
transfer. Knowledge of bio-heat transfer is then very impor-
tant in laser therapeutic applications.

Short-pulsed irradiation is accompanied with the use of
pulsed lasers with pulse duration in the micro/nanosecond
time scale. Short-pulsed lasers can be used in a wide spectrum
of emerging biomedical technologies such as in laser surgery
and treatment [1-4], optical imaging and diagnostics [5-7], etc.
Fundamentals to these applications are knowledge of multi-
time-scale heat transfer in biological tissues which includes
ultrafast laser radiation transport in the micro/nano time
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To analyze thermal response of a laser irradiated tissue
and to avoid thermal damage to surrounding healthy tis-
sue, combined thermal radiation and bio-heat modes must be
considered. In the present study, we investigate the thermal
response of biological tissues to short-pulsed irradiation and
the importance of hyperbolic heat conduction in the predic-
tion of accurate temperature distribution and development in
the turbid tissue.

2. Background

The concept of ultrafast radiation heat transfer [8-10] was
introduced to differentiate the time-dependent radiation heat
transfer associated with radiation propagation in the speed
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of light (i.e., the governing equation of radiation transfer
is time-dependent) from the traditional transient radiation
heat transfer in which the effect of time-dependent radia-
tion propagation is negligible (i.e., the governing equation
is still stationary) and only the boundary conditions are
time-dependent. Ultrafast radiation heat transfer is signif-
icant when the pulsed irradiation time is not considerably
longer than the characteristic radiation propagation time in
the medium. In modern technological applications, it is often
accompanied with the use of short-pulsed lasers. An excellent
review by Kumar and Mitra [8] has summarized the applicabil-
ity and techniques for solving one-dimensional (1-D) ultrafast
radiation heat transfer problems. Guo and co-workers [9-14]
considered the modeling of 2-D and 3-D ultrafast radiation
heat transfer and applications.

A recent review [15] compared several bio-heat models for
thermal prediction in perfused tissues and concluded that the
best practical approach for modeling bio-heat transfer during
hyperthermia may still be the Pennes model. For irradiation
times less than 5s, the influence of blood perfusion plays a
minor role and is negligible [16]; thus, the Pennes bio-heat
model recedes into the heat conduction theory.

The traditional Fourier heat conduction is described by
a parabolic diffusion equation which has an infinite speed
of thermal propagation, indicating that a local change of
temperature and/or heat generation causes an instantaneous
perturbation in the temperature field. For a physical process
occurring in a time interval shorter than that required for
attaining thermal equilibrium, however, it has been noticed
that heat wave theory [17-19] is more appropriate. The ther-
mal wave postulate based on damped wave models leads to
hyperbolic heat conduction equations and suggests a finite
speed of thermal propagation. Recently Vedavarz et al. [18]
examined the range of parameters over which this hyperbolic
non-Fourier formulation is significant. They analyzed the ther-
mal relaxation time for biological tissues and obtained a range
of 1-100 s at room temperature. Mitra et al. [19] experimentally
measured the thermal relaxation time for processed bologna
meat to be 15.5+2.1s. Such large thermal relaxation times
reported for biological tissues make the thermal wave the-
ory specifically significant in the thermal modeling of pulsed
laser-tissue interactions.

Many studies in the literature have considered mathemat-
ical and numerical techniques to a variety of problems via
hyperbolic wave models [17-22]. The hyperbolic heat conduc-
tion involves the wave nature of thermal transport. Difficulties
encountered in the numerical solution of such problems
include, among others, numerical oscillations and the rep-
resentation of sharp discontinuities with good resolution at
the wave front. Glass et al. [20] considered the solution of
one-dimensional hyperbolic conduction problems using Mac-
Cormack’s scheme to handle discontinuities at the wave front
with high resolution and little oscillation.

Since the speed of thermal wave propagation in biologi-
cal tissues is several orders of magnitude slower than that
of light, the coupling of radiative-conductive heat transfer
involves two distinct time scales. Here we propose a three-
step approach. First, short-pulsed radiation is absorbed in
the tissue and it results in an immediate local temperature
rise in the nanosecond time scale. Since the incident laser
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Fig. 1 - Geometric sketch of a tissue cylinder.

beam is axisymmetric and of Gaussian profile, the tissue is
modeled as a two-dimensional axisymmetric cylinder. The
ultrafast radiation heat transfer in the tissue is modeled using
the transient discrete ordinates method (TDOM) developed
by the authors [9]. For pulse train irradiation in microsec-
ond/millisecond time scales, the temperature response is only
a simple accumulation of single pulses. Second, thermal wave
propagation starts following the local temperature rise; and
the hyperbolic heat conduction is considered in the meso-time
scale. The hyperbolic heat conduction equations are solved by
the finite difference method using MacCormack’s predictor-
corrector scheme with error terms correction. Finally, thermal
waves fade away and parabolic heat diffusion predominates
after several thermal relaxation times. Since the last step has
been extensively studied in traditional bio-heat modeling, the
current study focuses on the first two steps and the compar-
isons with the parabolic diffusion modeling.

3. Mathematical models

The pulses of a collimated laser beam are incident into a tissue
surface as shown in Fig. 1. The pulsed laser radiation heat
transfer can be formulated by the transient radiative transfer
equation in the cylindrical coordinates system as [9]:

1311 H!l 0 1 190 141 1311 1 1
Sl N 0 P Y el I = s,
T + " B]’[ ] ]’3¢[MZ ]+Mgaz + (0a +03) (0a + 0s)

1=1,2,...n, (1)

where c is the speed of light in the medium, !, 4}, and 4} rep-
resent the directional cosines of a discrete ordinate direction,
I' is the directional radiation intensity, o, is the absorption
coefficient, o is the scattering coefficient, and S! is the source
term that can be expressed as:

n
® o
Sl:(l—w)lb-i-EE wio@E - N +wsl, 1=1,2,...n, (2
i=1

where the scattering albedo w=0s/(0a +05) is introduced and
I, is the blackbody radiation intensity. A quadrature set of n
discrete ordinates with the appropriate angular weight w is
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used. The collimated laser source SL in Eq. (2) is expressed by:

sl — iw(gc ~ 3, 3)
where the unit vector, §¢, represents the collimated laser inci-
dent direction. When the reduced scattering coefficient, o} =
(1 — g)os, is used, the scattering phase function @ is a unity.
Here, g is the asymmetry factor.

The incident laser has a Gaussian profile both tempo-
rally and spatially. For normally incident irradiation, the beam
intensity is specified as:

Ie(r,z,t) = (1 — R)qo exp {—41n2 X [(t —z/c)/tp — 1,5}2}
_y2
X exp <U2> x exp (—oeZz), (4)

in which, qo is the amplitude of the pulse heat flux, v is the
Gaussian variance, t;, is the pulse width, R is the reflectance on
the tissue surface, oe = 04 + o/ is the reduced extinction coef-
ficient. Here, we consider an impinging area within 0 <r <2v
and a pulse irradiation within 0 <t <3t,. Then, the averaged
incident laser power density (or fluence rate) is obtained by

2v 3p
= Nt
j N %/ 2y/ Mdtdr — O.2611M, (5)
(29" Jo 0 1-R tr

where N is the number of pulses and t, is the time duration of
the whole irradiation. The use of a pulse train is to avoid direct
laser ablation due to extremely high flux in a short pulse.

Once the radiative intensity field is obtained, the incident
radiation, and the radiative heat flux divergence can be calcu-
lated as:

n

G=) wrl+L, ()
=1

V - Qaq = 0a(47lp — G). )

The local temperature response is governed by the follow-
ing energy equation:

aT(r, z,t)

ot ==V [Aconda(r; Z, 1) + Grag (. 2, 1)), ®)

pCp
where p is the density, C;, is the specific heat, and T is the tem-
perature. In hyperbolic thermal wave theory, the conductive
heat flux vector is expressed by [17]

. 89cond(r Z, t)

at + qcond(r’ Z, t) = 7kVT(r* Z, t)’ (9)

where the thermal relaxation time r and thermal conductivity
k are introduced. Introducing the thermal diffusivity o =k/pCp,
the speed of thermal wave is

qa=y/% (10)

When 7 — 0, ¢t > oo; Eq. (9) regresses to the traditional Fourier
expression.

In the case of tp « 7, a dimensional analysis of Egs. (8) and
(9) reveals that within the short pulse duration neither thermal
wave nor heat diffusion is important and the incident pulse
will result in a very localized temperature response that can
be described by

aT(r, z, t)
pCp———— = =V.lraq(r. 2. 1). (11)

In the meso-time scale after the turning-off of the short
irradiation, the energy equation in the axisymmetric cylindri-

cal coordinates system is simplified as

oC aT(r, z, ) _ 3qcond,r(1: 2, 1) h deond,r(T, 2, 1)
P ot ar r
9qcond z(rv Z, t)
—_— . 12
+ pe (12)

For the sake of analysis, the hyperbolic conduction equa-
tions are converted to vector form with non-dimensional
variables as follows:

JdE OF oG
—+ —+—+H=0 13
% + o + 5 + (13a)
where
0 Qx Qn Qx/X
E=|Q|.F=| 6 |.G=]| 0 | ,H= Q | (13b)
Q 0 6 Q
and the non-dimensional variables are defined as:
T _z £ t
1= e 1= T T »
Q _ qcond,r\/& _ QCond,z«/"‘E _ T_Ti
" k(Tref - Ti) ' k(Tref - Ti) ' Tref - Ti

In which T; and Ty are the tissue initial and reference
temperatures, respectively. The reference temperature that
represents the desirable temperature response induced by the
irradiation is 65°C in the present calculations. This quantity
was reported as a proper temperature in laser-tissue welding
to achieve optimum welding strength [3].

The tissue is assumed to be at a constant and uniform tem-
perature of 37 °C initially. Except for the laser incident surface
which is exposed to the ambient air at room temperature of
25°C, all other surfaces of the tissue cylinder are surrounded
with tissue; and thus, remained at the constant temperature.
Thus, the initial and boundary conditions for the hyperbolic
heat conduction model are given as

0=Q,=Q,=0, foré=0. (15a)
(18 _

78)( =0, atyx=0. (15b)
Q, =h*(6ec — 0), atn=0. (15c¢)
0= O, at x = Xmax OT 7 = Nmax. (15d)
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where 6, the non-dimensional ambient temperature, h* =
Jath/k, and h is the convective heat transfer coefficient.

For the radiative heat transfer analysis, Snell’s law and Fres-
nel’s law [2] are adopted at the air-tissue interface because of
the mismatch of refractive indices between the two media.
For the normally incident laser radiation, the reflectance on
the incident surface is

n—1

R-(15) 16)

where n is the refractive index of the tissue. For internal
radiation at the tissue-air interface, total reflection occurs
when the incident angle 6; is not less than the critical angle,
er =sin~1 (1/n), because the refractive index of a biological tis-
sue is greater than that of air. When 6; <6, the reflection on
the interface is purely specular and the reflectance is calcu-
lated by Fresnel’s equation:

1 [tan2(6; — 6 in%(6; — 0
RS = = anz( i k) + S%nz( i r) i (17)
2 [tan®(6; +6r)  sin®(6; + &)

where 6 is the refraction angle predicted using Snell’s law.

Since biologic tissues are generally highly scattering, pho-
tons reaching the other boundaries of the tissue cylinder have
been undergone multiple scattering events and the possibil-
ities of photons passing through the boundary or reflecting
back are almost equal. Thus, we specify a diffuse reflectance
of 0.5 on such surfaces. The reflecting boundary conditions
can be represented by [12,13]

Rd L s .
1 | PO
IL, =R +— Tew + E wkr, |n-§

3 <0

(18)

In the present models the following assumptions are
adopted:

(1) The volume-average method is used for predicting local
temperature response during a short irradiation period.
Since the thermal wave speed in tissues is generally in the
order of 10~* mm/ms, the propagation of a thermal wave is
10~* mmin 1 ms. As compared with the dimension of a tur-
bid tissue (1-100 mm), thermal propagation and diffusion
are negligible within 1 ms.

(2) Tissue radiation emission is neglected because the tis-
sue blackbody intensity is much smaller than the incident
laser intensity.

(3) Tissue optical and thermal properties are thermally stable
during the heat transfer process.

(4) Blood perfusion and thermal evaporation and/or phase
change of tissue during the heat transfer process are not
considered.

The considered human tissues include dermis, aorta, heart
(endocardium), and uterus. The optical properties of these tis-
sues are listed in Table 1, in which the data are cited from
Cheong et al. [23]. It is seen that the tissue absorption is gen-
erally much weaker than the scattering. The tissue density
and specific heat are chosen in 70% water tissue condition
such that pCp =3.52 x 10° (J/m3K) [24]. The thermal diffusivity

Table 1 - The optical properties of human tissues (data
are cited from [23]).

Tissue type Optical properties

oa (mm—1) ol (mm-1)
Dermis 0.27 3.55
Aorta 0.052 4.1
Heart (endocardium) 0.007 0.367
Uterus 0.035 12.214

is assumed to be 0.14 x 10-® m?/s [25]. The thermal relax-
ation time for thermal wave propagation is assumed to be 16 s
[18,19]. The above thermal property values are assumed for
all the four considered human tissues in spite of the fact that
small variations in thermophysical properties exist among dif-
ferent soft tissues and/or individuals. The non-dimensional
radius and thickness of the tissue cylinders are selected as
10 to minimize the tissue boundary effect and wave echo.
The non-dimensional Gaussian variance of the incident laser
beam is 0.65. The heat transfer coefficient at the tissue/air
interface is assumed to be 15 W/(m?K).

4, Numerical schemes

The TDOM with S1p scheme was employed for the solution
of the present ultrafast radiation heat transfer problem. For
information on the numerical scheme and accuracy valida-
tion, please refer to our recent publication [9] for the cylindrical
coordinates system or to Guo and Kumar’s publications [12,13]
for the Cartesian coordinates system. Therefore, the details of
the numerical method on radiative transfer are not repeated
here.

To solve the hyperbolic heat conduction equations, Mac-
Cormack’s predictor-corrector scheme is adopted. The scheme
has been known to deal with thermal wave propagation very
wellin 1-D problems [20,21]. Here it is extended to 2-D axisym-
metric cylindrical problems. The discretized forms of the
non-dimensional hyperbolic conduction equations are as fol-
lows:

Predictor:
~n+1
Ei.j = E?)- — vx(F?HJ — Ffj) - vy(G{fjJr1 — Gir,lj) — AEHRJ- (19a)
Corrector:
1 =n+1 =n+l  =ntl
B = S[EG + By —w(Fij —Fig))
~n+1 ~n+1 ~n+1
—vy(Gjj ~ —Gjj1) — AEH;; ] (19b)

von Neumann stability analysis was conducted and the
stability criterion is:

V2 4+ v)zl <1 (20)

The two Courant numbers are defined as vx=A&Ax and
vy = AE/An.
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MacCormack’s scheme is explicit and has second-order
accuracy. The modified equation is determined as

9E  oF oG 9 )
— 4+ — 4+ — +H+ —(AoF + A3F) + —(A2G + A3G
3S+3x+3n+ +3X(2+3)+an(2+3)

+ 0(a*%) =0, (21a)

where the error terms are

Ao = L(ag? [(1 - vi)BZF] L 2aG = (o) {(1 - v%)azc] |

3! 9x2 an?
(21b)
F 1 3300102 9°F
A3 ZZ!(AX) vx( *Vx)ﬁ ,
G= Lan? 3112 A 21
A3G = Z!(A'?) vy ( _Vy)ﬁ . (21¢)

Because of the stability constrain, the Courant numbers
cannot be unity. Thus, the error terms in Eq. (21) exist and
correction of the error terms in Eq. (13) is important because it
is the modified equation that is actually solved when Eq. (13)
is integrated by MacCormack’s scheme. This can be done by
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Fig. 2 - Comparisons of the numerical results with the
analytical solutions [22] of the temperature profiles along
the cylinder centerline: (a) continuous source; and (b) single
pulse source.

subtracting the error terms from Eq. (13), which then becomes

dE  9F 3G

%o Ty THEO (22a)
where

Fo = F — AoF — AsF, (22b)
Go =G — A2G — A3G. (22¢)

When MacCormack’s method is applied to Eq. (22),
the resulting modified equation does not contain the
second-order and third-order error terms. In the present com-
putations, the error terms are discretized by second-order
accurate approximations.

For both the radiation and hyperbolic conduction simula-
tions, the same grid system is adopted to avoid interpolation.
Theradius of the tissue cylinder is equal to its thickness so that
the cylinder is meshed by 100 x 100, or 200 x 200, or 300 x 300
grids in the r =z (x — n) plane. In such situations, the Courant
numbers in the radial and axial directions are equal. The sim-
ulation results for the three sets of grids were consistent and
the difference between the 200? and 3002 grids were generally
within 2%. Thus, the results for the tissue cylinders presented
in the next section are from the 200 x 200 grid system. For the
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Fig. 3 - Comparisons of the calculated temperature profiles
along the cylinder centerline with and without error terms
correction: (a) continuous source; and (b) single pulse
source.
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Fig. 4 — Contours of the non-dimensional temperature fields of the dermis tissue subject to an ultrashort pulse irradiation at
selected time instants: at (a) t=20ps; (b) t=40ps; (c) t=100ps; and (d) t=500ps.

hyperbolic conduction modeling, the non-dimensional time
step A¢ is generally selected to be half of the non-dimensional
spatial grid size. Thus, the Courant number in both directions
is 0.50 and the computations are stable. Actually we tested
three different Courant numbers, i.e., 0.2, 0.5, and 0.7. For Mac-
Cormack’s scheme without the error terms correction, a small
Courant number (0.2) tends toward strong numerical oscilla-

1e-5 4
o | [/ e
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© e S )
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E - Aorta tissue
2 [ — Heart tissue (Endocardium)
= [l e e e
_5 5e-6 4 __i /”
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0 § . , . .
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Fig. 5 - Temporal profiles of the non-dimensional
temperatures at different locations in the tissues subject to
an ultrashort pulse irradiation.

tion. When the error terms are corrected, however, numerical
oscillations vanish for all the three considered Courant num-
bers.

For the ultrafast radiation heat transfer modeling, we con-
sider a pulse width of 10ps. The time step is 0.2 ps and the
calculation time is extended to 1ns such that a stable local
temperature rise is achieved. The irradiation contains usually

1.0
Aty=0

Dermis tissue

response to pulse train

o
™
1

n=0

<o o
i o
1 "

Nondimensional temperature
o
L)%

0.0 T T
0.0 0.2 0.4 0.6 0.8 1.0
Time (ms)

Fig. 6 - Temporal profiles of the non-dimensional
temperatures in the dermis tissue exposed to 1 ms pulse
train irradiation.
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Fig. 7 - The maximum temperature at the laser spot center
vs. the incident laser power for various tissues.

many such short pulses. In the present calculations, 10° pulses
are irradiated during 1 ms. After that, the irradiation is turned
off for purely thermal wave or diffusion treatment.

5. Results and discussion

The current computational code is validated through com-
parison of numerical results with analytical solutions. Let’s

(a)3

Calculated results

Analytical results
expi-o,x)

Human dermis tissue
(o,=027mm'", o, =3.55mm")

Nondimensional temperature

Fully absorbing medium
(0,=027Tmm

0 2 4 6 8 10
Optical axis

Fig. 8 - Comparisons of the non-dimensional temperature
profiles along the cylinder centerline subject to 1 ms pulse
train irradiation predicted by the radiative heat transfer
modeling and simple Lambert-Beer’s analysis, respectively.

consider a hyperbolic heat conduction problem in a semi-
infinite region due to axisymmetric continuous or pulsed
surface heat sources. The problem has been described and
analytically solved by Kim et al. [22]. The irradiation source
is simplified as a surface heat flux. In the calculations both
the non-dimensional radius and thickness of the cylinder are

(b)3

(d) 3

Fig. 9 - Comparisons of the non-dimensional temperature fields induced by the 1 ms pulse train radiation heat transfer: (a)
dermis tissue; (b) uterus tissue; (c) aorta tissue; and (d) heart tissue.
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set at 1.5. Fig. 2(a) and (b) show the comparisons of the calcu-
lations with the analytical exact solutions for the continuous
and single pulse sources, respectively. The non-dimensional
temperature profiles along the cylinder centerline at differ-
ent time instants are selected for comparison. Various grid
sizes are considered in the calculations with a constant
Courant number of 0.5. It is seen that the numerical results
for the case with a continuous source match excellently with
the exact solutions. The sharp wave fronts are well cap-
tured. The numerical results for the case with a single pulse
source generally match with the exact solutions. The grid
size influences the quality of the simulated wave fronts in
Fig. 2(b). With coarse grid sizes the dissipative effect is obvi-
ous and the gradients at the wave fronts tilt. With refining
grid sizes the sharp wave fronts are well captured. However,
it is worthy of mentioning that the refining of grid system
will increase computer memory and CPU time; and there
is always a compromise between accuracy and computation
costs.

Fig. 3 demonstrates the importance of the error terms cor-
rection in MacCormack’s scheme using the above exemplary
problem. The grid size is Ax = An=0.001 and the Courant num-
ber is still 0.5. Strong numerical oscillations at the wave fronts
are observed in the numerical results without correction of
the error terms. These oscillations are due to the dominance
of the odd derivate error terms over the even derivate term.
However, the numerical oscillations are eliminated when the
error terms are corrected.

Now let’s consider transient heat radiation and conduction
problems in turbid tissues exposed to short-pulsed irradia-
tion. Fig. 4 shows the contours of the temperature fields in
the dermis tissue subject to a 10ps pulse at four different
time instants. At t=20ps, the temperature field is confined
in a superficial regime around the laser spot. At t=40ps, the
temperature field is penetrated axially due to radiation propa-
gation. Also the magnitude of temperature att =40 psis greater
than that at t=20ps, because of the continuous absorption of
the Gaussian irradiation (up to 3tp). The temperature fields
at t=100 and 500ps are further enlarged as compared with
the figure at t=40ps. However, the expansion speed of the
temperature field gradually slows down. This is because the
local temperature response depends on the local volume-
average accumulation of radiation energy absorption. When
the incident pulse is turned off after 3t;,, the source for radia-
tion absorption comes only from the scattered radiation. As
time elapses, the scattered radiation becomes weaker and
weaker.

Fig. 5 shows the temperature responses of three tissue
types to a single 10 ps pulse at three selected positions in the
centerline (x=0; =0, 0.5, and 1). It is seen that, at the location
of n=1the temperature in the heart tissue is much higher than
the temperatures in the aorta and dermis tissues. The large
absorption of the dermis tissue will confine the laser radiation
in a small area. When the changes of the temporal tempera-
tures at all locations become very flat, pseudo steady state
of the temperature response is then reached. The time for
achieving the pseudo steady state responding to a single short
pulse depends mainly on the tissue properties. It is found that
longer time is required for weakly absorbing tissues, such as
the heart tissue. Generally the temperature field will reach to

pseudo steady state condition in 1ns for all the considered
tissues.

The pulse train response in the microsecond/millisecond
time scales with negligible thermal wave and diffusion is
then a simple addition of the pseudo steady state tempera-
ture of the single pulses. In Fig. 6, the temporal temperature
responses of the dermis tissue subject to pulse train irradia-
tion (10° short pulses within 1 ms) are plotted at three selective
positions. The responses are linear at all positions unless they
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Fig. 10 - Comparisons of the temporal profiles of the
non-dimensional temperature in the dermis tissue

between the hyperbolic conduction and parabolic diffusion
predictions.
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are inspected in the picosecond/nanosecond time scales as
shown in Fig. 5. In the following figures, the irradiation condi-
tion is assumed to be a pulse train of 10> pulses in 1 ms.

In the present studies, the incident laser power is adjusted
to let the maximum temperature at the laser spot be a unity.
Fig. 7 shows the relationships between the maximum temper-
ature at the laser spot center and the laser power density with
pulse train irradiation for the four tissues. The smaller the
tissue absorption coefficient, the higher is the required laser
power. Thus, increasing tissue absorption in the target area
is important in laser surgery and treatment applications. This
can be realized through proper selection of laser wavelength
[1], use of endogenous or exogenous chromophores [3,9], etc.
It should be mentioned that relationships are linear when tis-
sue emission is neglected. A logarithmic scale is used in the
abscissa in Fig. 7.

Fig. 8 shows the spatial variance of the non-dimensional
temperature along the dermis tissue cylinder centerline
at time instant of 1ms, where the calculated results are
compared with the simple Lambert-Beer’s analyses. This tem-
perature profile is determined by the local radiation deposition
through radiation heat transfer analysis. When scattering
is neglected, the numerical result for the fully absorbing
medium matches excellently with the Lambert-Beer’s anal-
ysis. Since scattering in the dermis tissue is strong, the
analytical result from simple Lambert-Beer’s law does not
match with the simulation. For absorbing-scattering tissues,
therefore, Lambert-Beer’s law may not be a good approxi-
mation. Instead accurate radiation heat transfer modeling is
desirable.

The immediate temperature fields induced purely by radi-
ation absorption of the pulse train are compared in Fig. 9
between different tissue types. It is seen that the temperature
patterns vary, depending on the tissue extinction coefficient.
In the uterus tissue (has the largest 0. among the four tissues),
the temperature is concentrated in a very small region. In the
heart tissue (has the smallest o among the four tissues), the
temperature field penetrates to deep tissue. The temperature
fields are similar in the aorta and dermis tissues because they
have similar o, values.

Thermal wave propagation follows the immediate local
temperature rise, but it is only significant in the meso-time
scale. In Fig. 10, the temporal temperature profiles in the der-
mis tissue at several selected locations are displayed. Strong
wave behavior is observed when 0<&<4 where the tem-
perature changes periodically with decreasing amplitude. To
understand the differences between the hyperbolic heat con-
duction and traditional Fourier parabolic heat diffusion, the
results predicted by the parabolic diffusion model are also
plotted in Fig. 8. The finite difference method with explicit
scheme was used for the diffusion simulation. Since this tech-
nique is mature and well-described in the literature and texts,
it is not repeated here. In the parabolic diffusion prediction,
the temperature decays exponentially and more slowly than
the hyperbolic counterpart. It is noticeable that the hyperbolic
wave model predicts larger maximum temperatures at posi-
tions beyond the laser spot center than the parabolic diffusion
model. When the time reaches to 10 thermal relaxation times,
the thermal waves fade away and the predictions between the

hyperbolic and parabolic models are consistent.
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Fig. 12 - Comparisons of the maximum temperature maps
in the dermis tissue due to purely radiation heat transfer or
combined heat transfer predicted by the hyperbolic and
parabolic models, respectively.

Fig. 11 shows the contours of the temperature fields in the
dermis tissue at various time stages. The results from both
the hyperbolic and parabolic models are given for comparison.
In the temperature distributions predicted by the hyperbolic
model, clear wave front propagation is observed. The tem-
peratures in the wave fronts are generally high, leading to
larger magnitudes in the temperature spectra in the contours
of hyperbolic modeling. As time elapses, the wave front weak-
ens and a diffusion field is quickly developing behind the front.
The temperature fields predicted by the parabolic model are
concentrated in the vicinity around the laser spot and a large
temperature gradient exists there.

In Fig. 12, the maximum temperature maps in the der-
mis tissue are plotted for comparison between the hyperbolic
and parabolic models, where the maximum temperature for

Fig. 13 - Contour of the maximum non-dimensional
temperature difference in the dermis tissue between the
hyperbolic and parabolic models.



122 COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 86 (2007) I12-123

each location during the entire hyperbolic or parabolic heat
transfer process is selected. The maps are useful for esti-
mating the thermal damage zone. It is found that in a small
zone around the laser incident spot, the maximum tem-
perature is determined by the direct radiation absorption.
While in other regions, the hyperbolic model generally pre-
dicts larger maximum temperature than the parabolic model.
Thus, its thermal damage zone is larger than that predicted
by the parabolic model. This finding could be significant for
many laser biomedical applications. The temperature differ-
ence between the two model predictions is further visualized
in Fig. 13. A 7% non-dimensional temperature increase is
observed in some region with the hyperbolic prediction.

6. Conclusion

The combined radiation and conduction heat transfer model
is proposed and employed to simulate multi-time-scale heat
transfer in turbid tissues subject to short-pulsed irradiation.
This model integrates three steps. In the first step, ultrafast
radiation heat transfer of a tissue subject to a single ultrashort
pulse irradiation is modeled; and an initial local tempera-
ture response at the picosecond/nanosecond time scale is
obtained. Pseudo steady state temperature response in the tis-
sues is found within 1ns. If the incident pulse or pulse train
is in the microsecond/millisecond time scales, the tempera-
ture response is a simple accumulation of the pseudo steady
state temperature for all the pulses. In the second step, ther-
mal wave propagation is considered at the meso-time scale.
In the third step, thermal waves fade away and the parabolic
heat diffusion predominates.

Accurate radiation heat transfer modeling is needed in
order to predict local temperature rise due to radiation absorp-
tion because biological tissues are generally highly scattering.
The temperature distribution pattern of a tissue induced by
direct radiation absorption depends on the absorption coeffi-
cient as well as the extinction coefficient. For the uterus tissue,
high temperature is concentrated in a very small region. While
for the heart tissue, high temperature penetrates to deep tis-
sue. The temperature fields are similar in the aorta and dermis
tissues because of small difference in their extinction coeffi-
cients.

The numerical method for the hyperbolic conduction
model is validated in an exemplary problem through compar-
ison with analytical solution. A good agreement between the
numerical and analytical results is found. The error terms cor-
rection in the modified equation is required for eliminating the
numerical oscillation. The temperatures in the dermis tissue
subject to a pulse train irradiation predicted by the hyper-
bolic heat conduction are compared with the parabolic heat
diffusion predictions. In the hyperbolic conduction modeling,
temperature changes periodically with decreasing amplitude.
In the parabolic conduction modeling, however, temperature
rises first and then decays exponentially. After several thermal
relaxation times the thermal wave behavior is substantially
weakened and the predictions between the hyperbolic and
parabolic models are consistent. The obtained maximum local
temperature maps show that the hyperbolic model predicts a
larger thermal damage zone than the parabolic model.
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