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Abstract
The near-field gap effects are investigated in planar dielectric microdisc and
waveguide coupling structures, emphasizing miniaturization of integrated
sensor systems. The simulation results show that the resonance frequency is
not obviously affected by the gap dimension when the gap between a
microcavity and its coupler is larger than 300 nm. However, the resonance
frequency shifts observably with a further decreasing gap to the nanometre
level. This shift is generally larger than the cavity resonance linewidth in the
10 µm diameter microdisc system, but is comparable to the cavity resonance
linewidth in the 2 µm diameter microdisc system. With increasing gap, the
cavity Q increases exponentially until it is saturated at a limit Q factor. An
optimal gap dimension exists for maximum light energy transfer and
storage. The concept of optimum gap is introduced and defined at the gap
dimension where half-maximum energy storage capability is achieved;
meanwhile, the cavity Q is high and the resonance frequency remains stable.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Whispering-gallery mode (WGM) optical cavities are typically
dielectric circular structures in which photons are confined
by repeated total internal reflections (TIRs) at the curvilinear
boundary such that the EM field can close on itself, giving rise
to resonances. Due to high cavity Q factor and finesse or high
sensitivity in a small mode volume, WGM microcavities [1]
have recently attracted increasing attention in the studies
of quantum electrodynamics [2], integrated electro-photonic
micro-devices [3], miniature optical biosensors [4], etc.

An ideal cavity would confine light indefinitely and would
have resonance frequencies at precise values. In practice,
energy losses exist due to diffraction, material absorption
or scattering as a result of surface roughness or material
inhomogeneity [5]. The cavity Q factor is defined as 2π times
the ratio of the stored energy to energy losses per cycle. It
is proportional to the photon confinement time. In general,
a WGM resonance spectrum has a Lorentzian lineshape, and
the quality factor can be expressed as Q = ω0/�ω (ω0 is
the resonance central frequency and �ω is the linewidth). The
intrinsic Q of a cavity is predominantly determined by the
morphology of the cavity. The larger the cavity, the higher

the achievable Q factor. Q > 109 has been observed at red
and near-infrared wavelengths in fused-silica sub-millimetre
in diameter spheres [6, 7].

Sensitivity is paramount in the design and applications
of WGM-based sensors. Under a resonance, an enhanced
radiation field exists inside the periphery of a microcavity. A
very strong evanescent field arises along the peripheral surface.
Its strength decays exponentially with increasing distance from
the surface. This evanescent field will certainly interact with
molecules adsorbed or covalently attached to the microcavity.
The interaction could induce a change in the WGM resonant
frequencies. In other words, a shift or broadening (narrowing)
or intensity change in the resonance signifies an altered WGM
microcavity environment [8].

High-Q WGMs are not accessible by free-space beams
and require employment of near-field couplers that provide
energy transfer to the resonant EM waves in the resonator
through the evanescent field of a guided wave or a TIR spot.
Numerous coupling devices, such as high-index prisms with
frustrated TIR [9], side-polished fibre couplers [10], optical
fibre-tapers [11, 12], and integrated waveguides [13, 14], have
been considered. Gorodetsky and Ilchenko [9] pointed out that
efficient coupling can be expected on fulfilment of two main
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conditions: phase synchronism and significant overlap of the
two evanescent fields in the gap that separates a resonator and
its coupler. Thus, this small gap between a resonator and a
waveguide is crucial for the near-field photon tunnelling and
energy coupling and may further affect the real cavity Q [14]
and resonance frequency [15].

The ability to achieve near lossless coupling is
fundamental to many basic studies as well as to practical
applications of WGM devices. Spillane et al [2] described the
nature of loss by ideality and showed that under appropriate
conditions ideality in excess of 99.97% is possible using
fibre-taper coupling to high-Q silica microspheres. Cai et al
[16] observed critical coupling in a fibre-taper to a silica-
microsphere WGM system. The coupled-mode theory [17]
attempted to understand the power coupling from tapered fibres
and half-blocks into microspheres.

A simple geometric optics analysis of photon orbiting
around a circular resonator shows that the free spectrum range
is inversely proportional to the diameter of the resonator. Thus,
microscale cavities ensure that the resonant frequencies are
more sparsely distributed throughout the cavity size-dependent
resonance spectrum than they are in corresponding mesoscale
cavities [1]. On the one hand, this will greatly facilitate WGM
sensing applications using spectroscopy techniques. On the
other hand, the extremely high-Q has to be sacrificed. At
several recent workshops on identifying research priorities
to ensure US national security, it has been concluded that
chemical and biological sensors and sensing systems must
become part of a fully integrated protection system responding
to diverse scenarios of potential terrorist actions. Novel
approaches to biochemical threat detection are needed that do
not rely on large quantities of reagents, provide faster response
and have greater sensitivity and selectivity.

The extraordinary demand for integrated techniques and
miniaturization presents a major challenge to the sensor
community. The present study will then focus on simulations
of very small microcavity (2 or 10 µm in diameter) and
waveguide integrated systems. In small microcavity systems,
the near-field gap effects are more significant because the
shrinkage in cavity increases the curvature that will lead to
increased diffraction loss as well as reduced cavity Q. In such a
situation, efficient light energy transfer from a waveguide to the
cavity is critical in order to achieve a high signal/noise ratio and
to generate a high-Q resonance. Further, few prior studies have
addressed the gap effects in such small microcavity systems.

Recent advances in the technology of nanofabrication
offer the possibility of manufacturing new optical devices with
unprecedented control. However, experimental manipulation
of very small systems and precisely nanoscale gap control are
still a challenge. To this end, computer-based simulation is
more flexible in terms of precise gap variation, continuity
of measurements and completeness of systematic studies.
Moreover, simulation is more accurate in small systems
because of refined meshes in reduced simulation domains.

2. Model

Consider an optical microdisc coupled with a light-delivery
waveguide as shown in figure 1. A small air-gap separates
the microcavity from the waveguide. The EM field in the

Figure 1. Sketch of a microdisc coupled with a waveguide.

microcavity and waveguide coupling structure is governed by
time-dependent Maxwell’s equations. By introducing time-
harmonic waves, Maxwell’s equations can be reduced to
Helmholtz equations as follows:

1

µ
∇2Ē + ω2εcĒ = 0,

1

µ
∇2H̄ + ω2εcH̄ = 0,

(1)

where Ē and H̄ are the electric and magnetic field vectors,
respectively, and ω = 2πc/λ. The complex permittivity is
εc = εcrε0 = ε − i(σ/ω), where εcr is the complex relative
permittivity and ε0 is the permittivity in vacuum. If the
complex index of refraction, m = n− ik, is given, the complex
relative permittivity can be obtained through the relationship
εcr = m2 = n2 − k2 − i2nk. The absorption index k for a
dielectric medium is extremely small and negligible.

WGM resonance inside the planar microdisc is typically
an equatorial brilliant ring, and this ring is located on the
same plane as the waveguide. So it is feasible to use a two-
dimensional theoretical model. In the present calculations we
apply in-plane TE waves, where the electric field vector has
only a z-component and it propagates in the x–y plane. At
the interface and physical boundaries, we used the natural
continuity condition for the tangential component of the
magnetic field. For the outside boundaries, the low-reflecting
boundary condition is adopted. The low-reflecting means
that only a small part of the wave is reflected and that the
wave propagates through the boundary almost as if it were not
present.

A laser beam is assumed to enter into the waveguide with
a uniform electric field distribution. The laser wavelength
is tunable. In the simulations, an index of refraction of
2.01 is assumed for both the microdisc and the waveguide,
corresponding to the dielectric material Ni3O4 against the
excitation wavelengths. The authors [8, 14] have successfully
adopted the finite element method for solving the Helmholtz
equations. The convergence and accuracy of the simulations
were satisfactory. Details of the solution scheme are then not
repeated here.

Two sets of the planar microdisc and waveguide coupling
configuration are considered as follows: (1) a microdisc 2 µm
in diameter is coupled with a 0.5 µm wide waveguide and (2) a
microdisc of 10 µm in diameter is coupled with a 2 µm wide
waveguide. The waveguides are straight. The gap dimension
is defined by the smallest distance between a microcavity and
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Figure 2. Resonance wavelength shift versus gap dimension.

its waveguide and varies between zero (in close contact) and
1000 nm. The incident light is in the near-infrared range. Thus,
a gap larger than 1000 nm is not practical.

3. Results and discussion

Figure 2 shows the resonance wavelength shift (RWS) against
the gap dimension (the shift is defined by λg − λ∞, where
λg is the resonance wavelength at a given gap dimension
and λ∞ is the reference resonance wavelength at a very
large gap width (1000 nm) in which the gap effect vanishes
and the resonance wavelength is the intrinsic one of the
microcavity). When the gap dimension is larger than 300 nm,
it is observed that (λg − λ∞) converges to zero for all the
four considered resonance modes (two for each microdisc
system); i.e. the resonance wavelength is very stable and
little affected by the gap dimension. This is very useful for
designing practical sensors based on the principle of resonance
frequency shift. For narrow gaps (<300 nm), however,
the resonance wavelength (frequency) is very sensitive to
the gap dimension. The resonance wavelength shift is
very appreciable when a zero gap (in close contact) is
used. This is consistent with the experimental observation
in a 430 µm diameter silica sphere [15]. The resonance
wavelength may shift downwards or upwards depending on the
microcavity/waveguide configuration and the resonance mode.

The stored energy and the Q factor versus the gap
dimension are plotted in figures 3(a) and (b) for the 2 µm
diameter microdisc system (resonance mode is at 823 nm) and
the 10 µm diameter microdisc system (resonance mode is at
801 nm), respectively. The stored energy is normalized by
the maximum value, respectively. It is seen that the energy
storage is maximum at a gap dimension of about 180 nm for
the 2 µm diameter microdisc system and of about 480 nm
for the 10 µm diameter microdisc system. The existence of
an optimal gap dimension for maximum energy transfer and
storage inside a microcavity is due to the bi-directional photon
tunnelling in the near-field gap. At this point, the scattering
radiation intensity from the microcavity is the strongest, while
the waveguide transmission is at minimum, leading to the
deepest dip in its transmission spectrum. It is worth mentioning
that the maximum energy transfer and storage is different from
the critical coupling concept used in the literature. Critical

Figure 3. Gap effects on energy storage and resonance quality and
the introduction of optimum gap concept: (a) a 2 µm diameter
microdisc coupled with a 0.5 µm wide waveguide working on the
823 nm resonance mode and (b) a 10 µm diameter microdisc
coupled with a 2 µm wide waveguide working on the 801 nm
resonance mode.

coupling is a condition in which internal resonator loss and
waveguide coupling loss are equal for a matched resonator-
waveguide system, at which point the resulting transmission at
the output of the waveguide goes to zero on resonance [9,16].
The maximum energy storage condition at the 2 µm diameter
microdisc system is not a critical coupling condition because
only 65% of the input laser power is stored in the microcavity
and the rest 35% outputs from the waveguide. Thus, critical
coupling is not possible for the small 2 µm diameter microdisc
system at the considered resonance mode. However, there still
exists a maximum of energy storage and transfer. On further
inspection of the 10 µm diameter microdisc system, we found
that the critical coupling condition is achieved at its optimal
gap dimension in which more than 99% of the input laser
power is stored in the microcavity and less than 1% goes to
the waveguide transmission.

The Q variation against the gap dimension is monotonic.
With increasing gap the cavity Q initially increases
exponentially and finally reaches to an asymptotic limit (limit
Q factor) when the gap approaches the optical wavelength
of interest. This limit Q factor is the maximum cavity
Q in theory for a given microcavity configuration. It is
predominantly determined by the cavity size and falls rapidly
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as the cavity size shrinks. In order to obtain a high-Q value,
however, the gap dimension should also be wisely selected.
Although the Q factor is the greatest when the gap dimension
is close to one optical wavelength of interest, the energy
stored in the microcavity is low (or the transmission in the
waveguide is very high) so that the strength of collected
signals, either through scattering in the microcavity or via
waveguide transmission, is bad. For many applications (such
as in sensors) and fundamental studies using WGM resonators,
a compromise should be taken into account between signal
intensity, signal/noise ratio, Q factor and resonance frequency
stability. To this end, the concept of optimum gap is introduced
(as shown in figure 3), and it is defined as the gap dimension at
the half-maximum energy storage point to the large gap side.
At the optimum gap, both the Q factor and the energy transfer
are high and the resonance wavelength is stable.

The linewidth of a resonance is inversely proportional to
the cavity Q. From figure 3, it is seen that the cavity Q at
the optimum gap dimension is 4 × 103 for the 2 µm diameter
microdisc system, corresponding to a linewidth of 0.2 nm.
Generally the linewidth for the 2 µm diameter microdisc
system is comparable to the RWS in figure 2. Thus, the
frequency shift due to gap variation in this system may not
be critical. The resolution in frequency shift sensing [4] is
determined by the loaded cavity Q. The signal intensity
is determined by the energy storage in the cavity. For the
10 µm diameter microdisc system, the cavity Q at its optimum
gap dimension is 2 × 107, corresponding to a linewidth of
4 × 10−5 nm. The general linewidth for the 10 µm diameter
microdisc system is smaller than the uncertainty of RWS in
figure 2. Therefore, the resolution of measurement will be
degraded by the RWS due to gap variation. The gap should be
designed at a dimension where both the Q factor and the energy
transfer are high and the resonance wavelength is relatively
stable.

In summary, the concept of optimum gap is introduced
and defined for efficient energy transfer from waveguide to
microcavity or energy storage in microcavity, while at the
same time maintaining high cavity Q and stable resonance
frequency. This optimum gap is of great importance in
design and applications of WGM-based devices, particularly in
sensing applications where both signal intensity and linewidth
are important and stability of resonance frequency is essential.
This study also characterizes small optical microcavities.
It is found that the Q factor depends not only on the

morphology of a microcavity (as generally recognized in the
field) but also on the gap dimension separating the microcavity
and its coupler. With increasing gap, the Q factor increases
exponentially before it reaches to an asymptotic limit. A limit
Q factor can be achieved when the gap is designed to be the
size of the optical wavelength of interest. It is also found
that the resonance frequency does not obviously vary with the
gap dimension when the gap dimension is larger than 300 nm.
At small gaps (<300 nm), however, the resonance frequency
shifts with varying gap dimension.
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