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We characterize planar microcavities in whispering-gallery mode optical resonances. The microcavity
consists of a waveguide and a microdisk, and a nanoscale gap separates the waveguide and the microdisk.
The devices can be fabricated on Si-based thin films by using conventional microelectronics techniques.
To characterize these types of cavity, we study a broad range of resonator configuration parameters
including the size of the microdisk, the width of the gap, and the waveguide dimensions. The finite-
element method is used for solving Maxwell’s equations. The electric fields and the energy density
distributions are obtained and compared between the on-resonance and off-resonance situations. A
brilliant ring with a strong electric field and a high-energy density is found inside the periphery of the
microdisk under first-order resonance. While under second-order resonance, there are two bright rings,
and the light intensity in the inner ring is stronger than that in the outer ring. The resonant frequencies
and their free spectral ranges are predominantly determined by the size of the microdisk. The gap effect
on the resonant frequencies is observable, although it is minor. The gap strongly affects the full width at
half-maximum (FWHM), finesse, and quality factor of the resonances. With an increase in the gap width
from 100 to 300 nm, both the Q value and finesse increase substantially, while the FWHM decreases. The
waveguide width has a visible influence on the Q value, FWHM, and finesse as well. © 2006 Optical
Society of America
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1. Introduction

Advances in micro- and nanofabrication techniques
have made it feasible to consider optical resonators
having physical or feature dimensions of the order of
one optical wavelength or less. As a particular mode
of microcavity resonances,1 whispering-gallery
modes (WGMs) occur at specific wavelengths when
light rays travel in a dielectric medium of circular
geometry such as spheres, disks, rings, and cylinders.
The resonance occurs when the electromagnetic (EM)
field closes on itself at the curvilinear boundary after
repeated total internal reflections. Since the pioneer-
ing work2 in the excitation of WGM resonances of
microspheres on an optical fiber, microcavity WGM
resonators have attracted increasing attention in re-
search and technology development in recent years

due to their high potentials for realization of micro-
lasers,3 narrow filters,4 optical switching,5 single mol-
ecule detection biosensors,6 and high-resolution
spectroscopy.7

As stressed by Arnold,1,8 WGMs are morphology-
dependent resonances. The resonant frequencies de-
pend on the size of the resonator. In general, the
resonant modes for a circular resonator are approxi-
mately predicted by 2�rn � mc0�f, where m is an
integer, n is the refractive index of the cavity mate-
rial, r is the radius of the cavity, and f is the resonant
frequency of mode m. The frequency shift of a given
resonant mode is estimated to be �f�f � ���r�r
� �n�n�, where �r and �n represent small changes of
the radius and refractive index of the cavity, respec-
tively. If we assume a constant refractive index and
consider the linewidth of the resonance to be the
smallest measurable shift (taken as �f � 10 MHz,
f � 3.75 � 108 MHz at � � 800 nm), then the smallest
“measurable” size change is |�r|min � 2.6 � 10�8r.
With a radius r in the range of 1–10 �m in a typical
microcavity, |�r|min is down to the order of 10�4 nm,
which is an order of magnitude smaller than the size
of an atom that is potentially detectable in theory.

Such a feature is being explored for use as detectors
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and sensors for identifying molecules surrounding
the peripheral surface of WGM resonators. When
peptides, protein molecules, or cell membranes are
attached on a resonator, for example, they interact
with the evanescent radiation field around the reso-
nator. The interactions polarize the molecules or tar-
get analytes and change the effective size and�or
refractive index of the resonator. All these can lead to
a detectable frequency shift in the resonance modes.
Thus it is possible to identify and detect single mol-
ecules by observing the resonant frequency shifts in
WGM-based optical sensors.8–10 These optical reso-
nance techniques can also be used to enhance the
existing sensitivity of biosensor devices.11,12

To optimize the sensitivity of specific molecules de-
tection, we must design a cavity configuration with
high finesse. Experimental methods for conducting
such a task are very time consuming and costly. An-
alytical models13 have been introduced to analyze
optical resonant phenomena associated with small
particles, such as the perturbation model.14 Analyti-
cal solutions are very useful and powerful in under-
standing the physical essence of the phenomena.
Although they can reveal the individual intuitive res-
onance properties of a microcavity, it is hard for them
to capture a completely real picture of a sensor as a
system. For example, a perturbation theory is hardly
able to account for the coupling of the evanescent
fields in the nanoscale gap and the interactions of the
resonator with surrounding individual molecules. As
a matter of fact, the EM field in the microcavity is
very sensitive against the gap through which photons
tunnel. A complete modeling of the EM field in the
whole WGM structure is highly desired. A flexible
numerical characterization can be developed into a
practical tool for system and device design and opti-
mization.

Previously, many WGM-based sensors were con-
structed of a microsphere and an eroded optical fiber
coupling structure. Although the Q value for a
microsphere-based resonator can be very high, such a
configuration may have some flaws for use as an ideal
sensor. For instance, mass manufacturing of such
devices can be difficult, and nonuniformity exists,
especially in the control of the gap distance separat-
ing the light-delivery fiber and the resonator. The gap
is a critical parameter for photon tunneling and af-
fects the Q value and resonant frequencies, as will be
shown in Section 4.

Here we consider sensors of a planar waveguide
and microdisk coupling structure. Such devices can
be manufactured on silicon-based thin films using
conventional silicon integrated circuits (ICs) process-
ing with high uniformity and density. This new cavity
structure will further reduce the sensor size and en-
hance miniaturization of the devices. Planar WGM
sensors possess a high sensitivity, a small sample
volume, and a robust integrated property for system-
on-a-chip applications.

Maxwell’s EM theory can be adopted to rigorously
describe the radiation–matter interactions in planar
WGM microcavities. In this paper, Maxwell’s equa-

tions are solved using the finite-element method. The
characterization of the WGM-based devices is focused
on the optical resonant phenomena with respect to a
broad range of cavity configuration parameters in-
cluding the microcavity size, the gap width, and the
waveguide width. The effects of these parameters will
be scrutinized. The resonant frequencies are chosen
in the near infrared range, which is ideal for appli-
cations to biomaterials and biomolecules.

2. Electromagnetic Theory

The sketch of a planar waveguide and microdisk de-
vice is shown in Fig. 1. The EM field in the WGM
device is governed by time-dependent Maxwell’s
equations. By introducing time-harmonic waves, the
Maxwell’s equations can be reduced to two Helmholtz
equations as follows:

1
�

	2E� � 
2�cE� � 0, (1a)

1
�

	2H� � 
2�cH� � 0, (1b)

where E� and H� are the electric and magnetic field
vectors, respectively, and 
 � 2�c��. We have intro-
duced the complex permittivity �c � �cr�0 � �
� i���
�, where �cr is the complex relative permittiv-
ity and �0 is the permittivity in vacuum. ε is the
permittivity of the medium, � is the permeability,
and � is the electrical conductivity. c is the speed of
light in the medium and � is the light wavelength.
The relationship between �cr and m is expressed by15

�cr � m2 � n2 � k2 � i2nk. Here the complex index of
refraction, m � n � ik, is conveniently introduced; n
is the real part of the refractive index and represents
a spatial phase change of the electromagnetic wave; k
is the absorption index and stands for a spatial damp-
ing of the electromagnetic wave.

WGM resonance inside the planar microdisk is typ-
ically an equatorial brilliant ring, and this ring is
located on the same plane as the waveguide. So it is
feasible to use a two-dimensional (2D) theoretical
model. In the present calculations we apply in-plane
TE waves, where the electric field vector has only a z
component and it propagates in the x–y plane. Thus
the fields can be written as

Fig. 1. Sketch of a waveguide–microdisk coupling WGM reso-
nator.
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E� (x, y, t) � Ez(x, y)e�zexp(i
t), (2a)

H� (x, y, t) � [Hx(x, y)e�x � Hy(x, y)e�y]exp(i
t). (2b)

To get a full description of the electromagnetic
problem, we also need to specify the boundary condi-
tions. At the interface and physical boundaries, we
used the natural continuity condition for the tangen-
tial component of the magnetic field:

n� � H� � 0. (3)

For the outside boundaries, the low-reflecting bound-
ary condition is adopted. The low reflection means
that only a small part of the wave is reflected, and
that the wave propagates through the boundary al-
most as if it were not present. This condition can be
formalized as

e�z · n� � ��H� � ��Ez � 0. (4)

The laser excitation source E0z, which propagates
inwards through the entry boundary of the
waveguide, can be treated as a low-reflecting bound-
ary condition and can be expressed by

E0z �
1

2��
(e�z · n� � ��H� � ��Ez). (5)

The WGM resonances have high-quality factors
due to minimal reflection losses. The quality factor Q
is defined as a ratio of 2� stored energy to energy lost
per cycle. From the energy conservation and reso-
nance properties, we can deduce a simple approxi-
mate expression16:

Q � 
0��
 � 2�
0
, (6)

where 
0 is the resonant frequency, �
 is the reso-
nance linewidth, and � is the photon lifetime.

To find the radiation energy conservation, Poynt-
ing’s theorem17 is employed:

�S(E� � H� ) · n� dS � ��
V

�E� ·
�D�

�t � H� ·
�B�

�t �dV

��
V

J� · E� dV, (7)

where V is the computation element volume and S is
the closed boundary surface area of V. The term on
the left-hand side of Eq. (7) represents the radiative
losses. The quantity S� � E� � H� is called as the
Poynting vector. The first integral on the right-hand
side represents the rate of change in total energy. The
second integral on the right-hand side represents the
resistive losses that result from heat dissipation in

metallic materials. For dielectric materials with neg-
ligible absorption index, we assume zero electric cur-
rent density, i.e., J� � 0. Thus the change in total
energy of the EM field is totally converted to radiative
energy.

3. Simulation Model

More than 30 years ago, Silvester18 developed high-
order Lagrange elements and first applied the finite-
element method (FEM) for solving EM field problems.
Recently, Quan and Guo10 successfully applied the
FEM to simulate the EM and radiation energy fields
in the WGM resonators of a microsphere and an op-
tical fiber coupling structure. Although the finite-
difference time-domain (FDTD) method19 has been
commonly adopted in computational electrodynam-
ics, the FEM has advantages in terms of the treat-
ment of irregular configurations. This is very useful
for simulation-based optimal design purposes.

In the present computations, the FEM is employed
for solving the Helmholtz equations. Detailed de-
scription of the solution scheme has been given in a
recent paper,10 and thus is not repeated here. FEMLAB

is used for finite-element analysis and pre- and post-
processing.

Silicon nitride �Si3N4� is selected as the material for
the waveguide and microdisk because this substance
has excellent physical and thermal stability, low cost,
and extremely low optical absorption around the op-
erating wavelengths.20,21 The thickness of the Si3N4
thin film is 1.3 �m. A 3 �m thick layer of SiO2 is
employed as the low cladding of the device. These
thin films can be deposited on the surface of silicon
wafer by using low-pressure chemical-vapor deposi-
tion or plasma-enhanced chemical-vapor deposition.
The large refractive index of Si3N4 ensures high con-
trast of refractive indices between the WGM resona-
tor and its surrounding medium (gas phase or
aqueous solutions) and can result in high-quality res-
onance modes. Figure 2 shows scanning electron mi-
croscopy (SEM) photos of a fabricated such device
using 248 nm optical lithography and silicon IC pro-
cessing.

A typical simulation domain is a 20 �m � 25 �m
rectangular area with a centered microdisk (as the
cavity) and a waveguide (for light delivery) below the
microdisk. The microdisk and waveguide are sepa-
rated by a small gap. The length of the waveguide is
extended to the edge of the simulation domain. A
laser beam from a tunable continuous-wave (CW) la-
ser is coupled into the left end of the waveguide to
excite the resonance. The frequency of the incident
laser varies between 364 THz (824 nm) and 376 THz
(798 nm). When the frequency of the input light is the
same as a natural resonant frequency of the cavity,
the WGM is excited. At the resonant frequency, the
scattering intensity from the microdisk will increase
sharply and form a peak in the intensity–frequency
spectrum.

The computational domain is meshed by 51,400
triangle elements. Since fine meshes are required in
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the vicinity around the periphery of the cavity, hier-
archical meshing is employed to scale the cavity down
to two different spatial levels (this is why a solid
internal circle is observed in Figs. 3 and 4 in Section
4). The general computational resolution of the exci-
tation wavelength is 0.5 nm, but special attention is
paid to the resonance frequency vicinities where
0.01 nm resolution is adopted. To conduct parametric
studies, the diameter of the microdisk varies between
10 and 15 �m. The width of the waveguide changes

between 2 and 3 �m. The gap distance between the
microdisk and waveguide varies between 100 and 300
nm.

4. Results and Discussion

First we investigate the EM fields and radiation en-
ergy distributions under WGM resonances and off
resonance, respectively, and observe the differences
under various operation conditions. Figures 3 and 4
exhibit the distributions of the electric field and the
radiation energy density, respectively, for three dif-
ferent operating conditions. Comparisons can be per-
formed between the off resonance, the first-order
resonance, and the second-order resonance. The first-
and second-order resonance frequencies are found at
373.78 THz (� � 802.61 nm) and 372.96 THz (804.37
nm), respectively. The off-resonance frequency is se-
lected at 372.67 THz (� � 805.00 nm). The diameter
of the microdisk is 15 �m and the surrounding me-
dium is air. The gap width, which is defined as the
smallest distance between the waveguide and micro-
disk, is g � 230 nm and the width of the waveguide is
w � 2 �m. The refractive index of the cavity and
waveguide material is assumed to be constant at 2.01
at the operating wavelengths.21 These general para-
metric values are used throughout the paper unless
otherwise specified.

In Fig. 3 we see that the EM field exists in the
microdisk even when resonant phenomenon does not
occur. Photons tunnel from the waveguide to the mi-
crodisk because the gap width is less than one optical
wavelength. For the first-order resonance, we see a
buildup of EM field forming inside the microdisk in
the vicinity close to the peripheral surface. The
strength of the electric field in the ring is stronger
than that in the waveguide through where the exci-
tation light is delivered. While in the case of the
second-order resonance, there are two bright rings
inside the microdisk. The strength of the EM field in
the inner ring is stronger than that in the outer ring.
Under the off-resonance condition, however, the EM
field is confined in the waveguide and its strength in
the cavity is very weak.

From Fig. 4 it is seen that the microdisk and
waveguide coupling resonator has an appealing prop-
erty of high-energy storage in the cavity when WGMs
occur. The majority of the energy stores in the thin
ring inside the peripheral surface of the microdisk

Fig. 2. SEM photos of a fabricated WGM microcavity.

Fig. 3. Electric fields under (a) the first-order res-
onance, (b) the second-order resonance, and (c) off
resonance.
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under first-order resonance. For second-order reso-
nance, the energy is stored in two rings and the light
intensity in the inner ring is stronger. The ratio of the
radiation energy storing in the microdisk to the en-
ergy passing through the waveguide is found to be
10.5 for the first-order resonance, whereas this ratio
is only 0.008 for the off-resonance case. The increase
of energy storage in the small volume cavity leads to
enormous enhancement of the micro- and nanoscale
radiation fields around the periphery of the resona-
tor, which can potentially be used to sense any exter-
nal perturbation.

Figure 5 shows the scattering spectra for three
different microdisk diameters: d � 10, 12.5, and
15 �m, respectively. Three first-order resonant fre-
quencies (modes) are found for each of the microdisk
sizes in the frequency range considered (364–376
THz). We find that the microdisk size affects signifi-
cantly the resonant frequencies and their intervals.
The free spectral range (FSR), which represents the
periodicity of resonance peaks, increases with the
decreasing diameter of the microdisk. The FSR of the
resonant modes is 3.273 � 0.007 THz for the case of
d � 15 �m, 3.940 � 0.009 THz for the case of d �
12.5 �m, and 4.954 � 0.010 THz for the case of d
� 10 �m. Such wide FSRs make the WGM microcavi-
ties excellent candidates for detection and distin-
guishing of trace gas and molecules using the
spectroscopy method.

To scrutinize the effects of cavity configurations,

the resonance data retrieved from the scattering
spectra in Fig. 5 are listed in Table 1. The resonance
data include the resonant frequency and its corre-
sponding wavelength, the quality factor, the full
width at half-maximum (FWHM) of the resonant fre-
quency band, the FSR, and the finesse of the resonant
mode defined by F � FSR�FWHM. To inspect the
effects of gap width and waveguide width, we obtain
the scattering spectra for three different gap widths
(g � 100, 200, and 300 nm, respectively) and three
different waveguide widths (w � 2.0, 2.5, and
3.0 �m, respectively). These are also listed in Table 1.

From Table 1 it is clear that the resonant frequen-
cies are predominantly determined by the size of the
microdisk. The gap width also affects the resonant
frequencies although its effect is in a finite range of
0.1 THz (of the order of 0.1 nm in terms of wave-
length) for the four different gap widths considered.
Such an effect can be attributed to the gap influence
on the orientation of photon tunneling. The influenc-
ing range of the waveguide on the resonant frequen-
cies for the waveguide widths considered is not more
than 0.01 THz, which is almost comparable to the
computation resolution. Thus the waveguide width
may have negligible effect on the resonant frequen-
cies.

The path length of the m-mode resonant photons
orbiting the periphery of the cavity is estimated to be
approximately 2mr sin���m�. Thus the resonant fre-
quencies can be analytically approximated as

f �
c0

2rn sin(��m). (8)

The analytically estimated frequencies using Eq. (8)
are compared with the numerically predicted fre-
quencies in Fig. 6. Although the two methods give
consistent results, it is seen that the difference of the
resonant frequencies between the two methods could
be as large as 1 THz. Nevertheless, Eq. (8) is simple
and can give a reasonable estimation of the resonant
frequencies.

Figure 7 further portrays the gap effects on the
quality factor Q and finesse F of the resonances. Four
different gap widths of 100, 200, 230, and 300 nm are
selected for comparison. Since there are three reso-
nant modes in the frequency range considered, three
sets of Q values and two sets of FSR data are obtained

Fig. 4. Energy distributions under (a) the first-
order resonance, (b) the second-order resonance,
and (c) off resonance.

Fig. 5. Scattering spectra for different microdisk sizes of d
� 10, 12.5, and 15 �m, respectively.
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Fig. 6. Comparisons between analytically estimated resonant fre-
quencies and numerically predicted resonant frequencies.

Fig. 7. Effects of the gap on the resonant quality factor Q and
finesse F.

Table 1. Resonance Data From the Scattering Spectra

Resonance Frequency
(THz)

Excitation
Wavelength (nm)

Quality Factor
Q

FWHM
(THz)

FSR
(THz)

Finesse
F

Case 1: d � 10.0 �m, g � 230 nm, w � 2.0 �m
364.582 822.86 21,446 0.017 4.944 282.5
369.526 811.85 20,529 0.018
374.490 801.09 22,029 0.017 4.964 283.6

Case 2: d � 12.5 �m, g � 230 nm, w � 2.0 �m
366.321 818.53 22,895 0.016 3.931 253.6
370.252 810.26 24,683 0.015
374.201 801.71 22,011 0.017 3.949 246.8

Case 3: d � 15.0 �m, g � 230 nm, w � 2.0 �m
367.235 816.92 21,602 0.017 3.266 210.7
370.501 809.72 26,464 0.014
373.780 802.61 23,361 0.016 3.279 218.6

Case 4: d � 15.0 �m, g � 100 nm, w � 2.0 �m
367.197 817.00 10,200 0.036 3.267 92.0
370.464 809.79 10,585 0.035
373.743 802.69 12,056 0.031 3.279 99.4

Case 5: d � 15.0 �m, g � 200 nm, w � 2.0 �m
367.224 816.94 19,328 0.019 3.267 186.7
370.495 809.73 23,155 0.016
373.776 802.63 21,987 0.017 3.281 198.8

Case 6: d � 15.0 �m, g � 300 nm, w � 2.0 �m
367.235 816.91 183,617 0.002 3.275 1,637.5
370.510 809.70 185,255 0.002
373.791 802.59 124,597 0.003 3.281 1,312.4

Case 7: d � 15.0 �m, g � 200 nm, w � 2.5 �m
367.215 816.96 26,230 0.014 3.277 211.4
370.492 809.73 21,794 0.017
373.765 802.64 23,360 0.016 3.273 198.4

Case 8: d � 15.0 �m, g � 200 nm, w � 3.0 �m
367.217 816.96 40,802 0.009 3.271 344.3
370.488 809.74 37,049 0.010
373.764 802.65 46,721 0.008 3.276 364.0
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and displayed. With the increase of the gap width
from 100 to 300 nm, it is seen that both the Q and F
values increase by over an order of magnitude. Ex-
amining Table 1, it is found that the gap width does
not obviously affect the FSR, but does strongly influ-
ence the FWHM of the resonant bands. The larger the
gap width, the narrower the FWHM. In terms of the
quality factor and FWHM, the effect of the microdisk
size is very slight.

The effects of the waveguide width on the Q value
and the FWHM are shown in Fig. 8 for the three
resonant modes. With the decrease in the waveguide
width, the FWHM of the resonance generally in-
creases, but the Q value decreases. From Table 1 it is
obvious that the waveguide width does not influence
the FSR. Comparing Figs. 7 and 8, we see that the
value of the gap has a much larger effect on the
resonance than the value of the waveguide width. In
this paper, we have just selected several typical val-
ues for the gap width. Since the gap could be designed
to up to one optical wavelength or down to zero (when
the resonator and waveguide are in close contact), a
more detailed scrutiny of the gap effect in a wider
spectrum of the gap width is needed and will be the
focus of our next report.

5. Conclusions

The characteristics of planar WGM microcavities
with a waveguide–microdisk coupling structure were
investigated numerically. The EM fields and radia-
tion energy distributions in the devices were obtained
through the solution of Maxwell’s equations. It was
found that photon tunneling between the waveguide
and microdisk is very weak under the off-resonance
condition and the radiation energy is well confined
inside the waveguide. When WGM resonance occurs,
photon tunneling is greatly enhanced and significant
radiation energy is stored in the microcavity. A very
brilliant ring with a strong EM field and a high ra-
diation intensity exists inside the periphery of the

microdisk under first-order resonance, whereas there
are two bright rings inside the cavity under the
second-order resonance, the strength of the outer ring
is weaker than that of the inner ring. Thus the first-
order resonances may be preferred in sensing appli-
cations because the interactions of interest occur in
the evanescent field surrounding the cavity periph-
ery. The WGM resonant frequencies are predomi-
nantly determined by the size of the cavity. The gap
separating the waveguide and the cavity has also
influence on the resonant frequencies. But the
waveguide size has negligible effect on the resonant
frequencies. The Q value is substantially influenced
by the gap width. The difference in Q values between
100 and 300 nm gaps is over 1 order of magnitude.
The waveguide width also affects the Q value. In-
creasing the waveguide width will increase the Q
value. The FSR of the resonances reaches to several
THz for the considered WGM microcavities. It is
mainly decided by the size of the cavity and little
affected by the gap and waveguide widths. The
FWHM of the resonances is strongly influenced by
the gap width. A wider gap results in a narrower
FWHM. The increase of the waveguide width leads to
the reduction of the FWHM. The finesse of the reso-
nances is affected by the gap and waveguide widths
and the size of the cavity. Among these parameters,
the gap width influences the finesse the most. With
an increase of the gap width from 100 to 300 nm, the
F value increases substantially. The finesse also in-
creases as the cavity size decreases or the waveguide
width increases.
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versity, the New Jersey Nanotechnology Consortium,
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0318001) to the project.
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