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Abstract: In this study we focus on understanding the system imaging 
mechanisms given rise to the unique characteristic of discretization in 
digital holography. Imaging analysis with respect to the system geometries 
is investigated and the corresponding requirements for reliable holographic 
imaging are specified. In addition, the imaging capacity of a digital 
holographic system is analyzed in terms of space-bandwidth product. The 
impacts due to the discrete features of the CCD sensor that are characterized 
by the amount of sensitive pixels and the pixel dimension are quantified.  
The analysis demonstrates the favorable properties of an in-line system 
arrangement in both the effective field of view and imaging resolution. 
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1. Introduction 

Digital holography [1] has been attracting intensive research efforts during recent years due to 
its potentials in automated high-resolution deformation measurement [2-3] and shape analysis 
[4], microscopic imaging and testing [5], as well as information transfer, storage and display 
[6], etc. The favorable imaging properties of holography are well utilized in these 
applications. Furthermore supported by digital recording and numerical evaluation, the 
imaging performance is advanced in terms of stability tolerance, direct data processing, phase-
contrast imaging [7] and availability of high-quality phase variations. Serving as the basis of 
these features, analysis of digital holographic imaging is of great importance. In this paper, we 
study the distinct effects of discretization in digital holography on system imaging. The 
imaging mechanism and imaging capacity regarding different recording geometries are 
particularly analyzed. In addition, the impacts induced by a CCD sensor that is characterized 
by the sensitive pixel amount and pixel dimension to the image formation and quality are 
quantified.  

In digital holography, the continuous spatial distribution of an optically generated 
hologram is sampled by the discrete sensitive pixels on a CCD array, whose outputs are 
converted to the digitized signals and stored in an image processing system for numerical 
evaluation. Such digital sampling principle and the subsequent matrix-based numerical 
processing result in new effects related to discretization non-existent in conventional 
holographic methods. Due to the particular effects, specific impacts are introduced to the 
system imaging mechanism and performance, regarding different system geometries. For 
precise recovery of an object by digital holography, the Whittaker-Shannon sampling theorem 
[8] implies that a band-limited function can be reconstructed from an appropriately spaced 
array of its sampled values. From a practical point of view, the distribution function of a 
hologram has significant spectrum values only in some finite regions, and hence can be 
treated to be approximately band-limited. Let’s consider a space-limited function ),( yxg , 

which is approximately band-limited with an area range of yx WW ×  in the spectrum domain. 

According to the sampling theorem, the total amount of the sampling points, namely the 
space-bandwidth product, is given by yxyx WWLLSW = , where yx LL  is the spatial 

dimension of ),( yxg  . 
Space-bandwidth product is a physical quantity that is tightly related to information 

capacity. 120It can be applied to characterize the capability of the systems in information 
transferring and processing; and thus, it is a measure to evaluate the imaging quality. 
Specifically for digital holography, the imaging performance can be studied in term of the 
space-bandwidth product, which is determined by its effective field of view and the cut-off 
frequency. To record an object with holography, it is required that the SW  of the system 
should be greater than that of the object so as to ensure no loss of information. Therefore, the 
space-bandwidth product of the input functions that will be accepted by the system can be 
employed to demonstrate its imaging performance. In this paper, the variations of SW  of an 
object during the process of holographic recording are analyzed, based on which the 
discretization effects on digital holographic imaging are studied. 

2. Diffraction and interference analysis 

Suppose in the one-dimensional case, a test object has a lateral dimension of OL  and a spatial 

frequency bandwidth of OW . Its space-bandwidth product, denoted as OSW , is then given as 

.OOO WLSW =  In a Fresnel digital holography system, the object beam diffracts at an angle 

[9] OO λγγα =)( , where λ  is the working wavelength and Oγ  the spatial frequency of the 
object. In the hologram plane located at a distance D  away from the object, the lateral 
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displacement of the diffraction beam is equal to ODγλ . That means that the beam interacting 

with the object at point Ox  with a spatial frequency Oγ  will be incident in the hologram plane 

at the position OOH Dxx γλ+=  as shown in Fig. 1. The propagation of the object beam can be 
briefly described in terms of the lateral location and the spatial frequency as 

 .),(),( HOOOOOO Dxx γγλγ +→    (1) 

 

 

 

 

 

 

 Fig. 1. Propagation sketch of the object beam 

In the hologram plane where a CCD sensor is arranged, the superposition of the object 
wave HO  and an in-line reference wave HR  produces an intensity distribution that can be 
expressed by 

 ).2cos(2)(
22

HOHHHHH xROROxh πγ++=    (2) 

 Therefore the space-bandwidth product of an in-line hologram is given by 

 ).1(:
O

O
OlineinH L

DW
SWSW

λ+⋅=−     (3) 

Equation (3) represents the requirement on the information capacity of an in-line digital 
holography system. It should have a space-bandwidth product at least equal to that of the 
hologram. Otherwise, an object cannot be recovered reliably. 

Consider the case of an off-axis arrangement. By offsetting the object at an angle θ  along 
one coordinate axis, say the X-axis, the interference of the object wave with a normally 
incident reference wave results in a hologram given as 

 ],)(2cos[2)(
22

HOHHHHH xROROxh θγγπ +++=   (4) 

where, λθγ θ /sin=  is the spatial frequency introduced by the offset angle. It implies that the 

variation of the SW  of an object in the hologram plane occurs in both the lateral dimension 
and spatial frequency. The procedure can be described as 

  
⎩
⎨
⎧

++−=→
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)].(,0),([

,

θθ γγγγγγ
γλ

OOHO

OOHO Dxxx
   (5)  

Figure 2 shows the shape sketches of the space-bandwidth product for both of the 
hologram types. Compared with the more compact feature of an in-line digital hologram, it is 
seen in the off-axis case that the two image terms shift apart to the central frequencies of 

θγ± , respectively. Moreover, their SW  shapes are no longer rectangular as that of the 

original object. Accordingly, CCD sensors that normally have a rectangular SW  shape cannot 
be efficiently utilized.  

Mathematically, an off-axis digital hologram has a space-bandwidth product given as 
 ).2()(: θγλ +⋅+=− OOOaxisoffH WDWLSW     (6) 
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To ensure the spatial frequency components within OW  not affected by the quadratic 

noises, θγ  has to satisfy .
2

3
OW≥θγ  Therefore, the minimum value of Equation (6) is  

 ).1(4:
O

O
OaxisoffH L

DW
SWSW

λ
+⋅=−     (7) 

For a same object, this equation implies that an off-axis holography system must provide 
a space-bandwidth product that is at least a factor of four greater than that needed in an in-line 
arrangement so as to include the entire components of HSW . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Space-bandwidth product of a digital hologram 

Comparison of Equation (3) and (7) gives the difference on the requirements for imaging 
the object information in the two types of system geometries. Originally, the information 
capacity of an object is an inherent property determined by the spatial dimension and 
bandwidth of itself. However, when the object is imaged by a digital holography system, 
constraints are applied to both the object size and the allowable spatial frequency due to the 
discretization effects. The effective field of view of the system confines the lateral dimension 
of an object that can be imaged. And the spatial bandwidth that can be transferred reliably is 
dependent on the system parameters. Therefore, studies on the imaging capacity of a digital 
holography system are needed by taking into account the different system configurations. 

3. Imaging capacity of digital holography systems 

In digital holography, whether the information of a test object can be reliably recorded and 
reconstructed depends on the capability of a system in resolving the micro interference 
patterns formed by the reference wave and all the point sources over the lateral extension of 
the object. However, for a CCD sensor that has a limited spatial resolution, the arrangement of 
the system has to be adjusted accordingly, so as to adapt the resultant fringe spacing to the 
spatial resolution of the CCD array used. 

According to the recording mechanism of Fresnel digital holography [10], it is known that 
for a test object, there is a minimum recording distance allowed to arrange the object in order 
to fit the effective field of view of the system. For an in-line system, the effective field of 
view yx LL × , as show in Fig. 3, is determined by the discrete features of the CCD sensor that 

are characterized by the pixel amount yx NN ×  and pixel size yx NN ∆×∆  as 
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Fig. 3. Effective field of view of an in-line Fresnel digital holography system 

For an off-axis arrangement, since digital imaging of an object has to meet 
simultaneously both the need of the minimum offset angle and the limitation of the maximum 
interference angle, the requirement of the recording distance is stricter in comparison with that 
of an in-line system. The effective field of view is just one-fourth of lineinyx LL −× )( . 

The distance corresponding to an effective field of view determines the highest 
achievable lateral resolution of an object with the maximum lateral extension OL  inscribed to 
the rectangular area. It is the spatial bandwidth allowed by the system, which is given below 
for the two different holographic geometries as  
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To evaluate the imaging performance of a digital holography system with the information 
capacity of an object that can be accepted, the space-bandwidth product in the two system 
arrangements are 
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Fig. 4. Imaging capacity of digital holography systems 
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Equation (10) quantifies the effects given rise to the discretization on digital holographic 
imaging. The comparison of the two system arrangements is shown in Fig. 4 for the case of 

2048=N  and mN µ9=∆ . In an in-line system, less constraint is applied to the effective 
field of view, which allows a test object to be imaged with higher resolution, and hence more 
details can be detected. This property can be utilized for applications in micromeasurement 
[11-12], in which imaging quality is essential for evaluating the performance of a metrological 
system. 

4. Discretization effects 

The characteristic of discretization in digital holography is introduced by the use of a CCD 
sensor to sample a hologram with a yx NN × array with sensitive pixels having a finite 

dimension of yx NN ∆×∆ . 

The size of the sensitive area of a CCD sensor, which is mainly dependent on the amount 
of the effective pixels yx NN × , plays an important role in Fresnel numerical reconstruction to 

acquire an image with high lateral resolution. Besides that, yx NN ×  involves in the 

determination of the effective field of view of a digital holography system as well. It can be 
regarded as a system factor evaluating the imaging quality, which can be described below in 
term of the 2D space-bandwidth product for the two types of recording geometries as 
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To show the effect of yx NN × , Fig. 5 illustrates the dependence of SW on the amount of 

sampling points of a CCD sensor. The involved quantities include nm532=λ  and 
mmNN yx µµ 99 ×=∆×∆ . The recording distance mmD 450=  is shown as an example in the 

figure, but the general tendency can be observed. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Effect of sampling amount of CCD sensors 

It is seen that the amount of sensitive pixels, to some extent, represents the imaging 
performance of a digital holographic system. More sampling points help to improve the 
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system resolution and hence achieve higher imaging quality. However, it is noted in the figure 
that the space-bandwidth product has a maximum for the case of 10241024×=× yx NN  

pixels in this example. The reason for it is that a large chip aperture imposes tight constrains 
to the effective field of view. The integral imaging capacity of the system is degraded in spite 
of the increase in the lateral resolution. This study reveals the issue of efficient utilization of 
system capacity. In some applications where just a small recording distance D is allowed, it is 
possible that only a limited part of a CCD sensor can be used, while the remaining region that 
does not fulfill the sampling theorem makes no essential contribution to the reconstruction. In 

an in-line Fresnel system, the effective CCD aperture is given as ./'
OS LNDL −∆= λ  

On the other hand, the simulation of digital sampling of the holograms with discrete 
points is an idealized situation. In reality, the sampling pulses always have finite area, 
corresponding to the pixel dimensions. Consider a sample pulse with the extension 

yx NN ∆×∆  representing a cell in a CCD chip. The intensity distribution ),( HH yxh  will 

then be integrated over the cell. Introducing the rectangular function, the integral over the 
CCD sensor can be written as 
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where ⊗  is the convolution operator.  This function is then sampled in the same way as in the 
ideal case. The reconstructed image wavefield now becomes 
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where {}F  indicates the 2D Fourier transform.  
 

 

 

 

 

 

 

 

 

 

 

Fig.6. Intensity distortion in reconstructed images 
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It is seen from the equation that the image is modified by a   function over the 
reconstruction area. The influence of the   function is on the amplitude term of the wavefield. 
Therefore, the non-ideal sampling effect induced by the finite pixel size of CCD sensors leads 
to the distortion of intensity distribution of an image. As shown in the Fig. 6, the intensity at 
the image corners is reduced to   of the values for the ideal case. In practical applications 
when intensity is concerned, the distortion can be compensated by dividing the respective   
function from each pixel numerically. Nothing has to be done with it in the interferometric 
measurements since phase distribution is free from its influence. 

The pixel dimension yx NN ∆×∆  determines the area of the reconstructed image, as well 

as the profile of the Sinc  function. Studying the distortion gradient of the amplitude over the 
image area with respect to different pixel size, we obtain the relation curve shown in Fig. 7. It 
is obvious that CCD sensors having fine sampling pixels help to achieve reconstructed images 
with more uniform intensity distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Influence of pixel size on amplitude distortion 

5. Conclusions 

In conclusion, for the applications of digital holography, especially in the field of 
micromeasurement, studies on imaging performance are of particular importance. Given rise 
to the unique characteristic of discretization in digital holography, the system imaging 
mechanisms are studied in this paper. Through the analysis on the variation of the information 
capacity of an object during the process of diffraction and interference recording, the imaging 
requirements, regarding both the in-line and off-axis digital holography geometries, are 
demonstrated. Moreover, the imaging capacity of a digital holography system is quantitatively 
evaluated in terms of space-bandwidth product, taking into account the effects due to the 
discrete features of the CCD sensor that are characterized by the sensitive pixel amount and 
the pixel size. It is concluded from the analysis that, an in-line system can exhibit better 
performance, both in terms of a larger effective field of view and a higher imaging resolution. 

 In studies of the image formation and quality of a digital holography system, the effects 
introduced by the discretization characteristics of a CCD sensor are discussed. By quantifying 
the contribution of the amount of sampling pixels to the space-bandwidth product of a system, 
it is found that, the N , characterizing the CCD chip aperture, describes the information 
capacity of a system. However, it is worthwhile to mention that imaging performance is an 
integral quantity of both the effective field of view and imaging resolution. The application of 
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a sensor array needs to coordinate the requirements in both aspects. On the other hand, it is 
found that the sensitive extension of a sampling pixel contributes to the amplitude distortion 
of a reconstructed image, in which the four corners are affected most with an intensity 
decrease to %53.40 . 
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