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Discrete-ordinates solution of short-pulsed laser
transport in two-dimensional turbid media

Zhixiong Guo and Sunil Kumar

The discrete-ordinates method is formulated to solve transient radiative transfer with the incorporation
of a transient term in the transfer equation in two-dimensional rectangular enclosures containing
absorbing, emitting, and anisotropically scattering media subject to diffuse andyor collimated laser
irradiation. The governing equations resulting from the discrete-ordinates discretization of the angular
directions are further discretized in the spatial and the temporal domains by the finite-volume approach.
The current formulation is suitable for solving transient laser transport in turbid media as well as for
steady-state radiative transfer in many engineering problems. The method is applied to several exam-
ple problems and compared with existing steady-state solutions and Monte Carlo transient solutions.
Good agreement is found in all cases. Short-pulsed laser interaction and propagation in a turbid
medium with high scattering albedo are studied. The imaging of an inhomogeneous zone inside a turbid
medium is demonstrated. © 2001 Optical Society of America

OCIS codes: 030.5620, 140.7090, 000.4430, 170.6920, 170.7050.
1. Introduction

Short-pulsed laser interaction and propagation
within turbid media have attracted a great deal of
interest in recent years,1 particularly for applications
n biomedical treatment and diagnostics, such as op-
ical tomography, laser surgery, and photodynamic
herapy. Fundamental to these laser applications is
he determination of transient light distribution in
cattering–absorbing media, which influences the
ate of heat generation, heat conduction, optothermal
roperties, and dynamics of ablation.
Modeling of the short-pulsed laser transport has

raditionally been done with the diffusion theory.
reviously the parabolic diffusion approximation has
een widely used for evaluating the reflected and the
ransmitted intensities of a scattering slab with
ulsed irradiation.2 However, experiments have

shown that the diffusion approximation is accurate
only for thick samples and fails to match experimen-
tal data for thin and intermediate samples.3 Also,
the diffusion model cannot analyze cases with non-
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scattering or low-scattering regions. Recently sev-
eral numerical solutions have been developed to
simulate time-dependent light transport through ab-
sorbing andyor scattering media. One mathemati-
cal model for describing short-pulsed laser transport
is transient radiative-transfer theory. Complete an-
alytical solutions of the hyperbolic transient
radiative-transport equation are not known. Ku-
mar et al.4 considered the solution of transient radi-
ative equation by use of the parabolic and the
hyperbolic P1 models. The adding–doubling meth-
od5,6 was used to solve the transient response of a slab
medium and to determine the optical properties of
turbid media. More recently, Mitra and Kumar7 ex-
amined several numerical models for short-pulsed
laser transport in a one-dimensional planar medium,
in which the discrete-ordinates ~DO! method, PN
model, diffuse approximation, and two-flux method
were addressed. Tan and Hsu8 developed integral
formulation for transient radiative transfer. With
the aim of using the radiation element method for
irregular geometries, Guo and Kumar9 extended the
radiation element method to consider hyperbolic
transient radiative transfer.

Only a few studies have been devoted to multidi-
mensional problems and complex geometries.
Yamada and Hasegawa10 used the finite-element
method to solve the parabolic diffusion approxima-
tion in two-dimensional ~2D! cylindrical media. Mi-
tra et al.11 applied the hyperbolic P1 model to
transient radiative transfer in a 2D rectangular me-



12

T
i
r
t
n
s
d
t
p
r

dium. Wu and Wu solved the integral equation,
using the quadrature method in the study of tran-
sient radiative transfer in 2D cylindrical linearly
anisotropically scattering media with pulse irradia-
tion.

However, the Monte Carlo ~MC! method is always
broadly used in the study of laser propagation be-
cause of its simple algorithm and flexibility to include
real physical conditions. Wilson and Adam13 devel-
oped a MC model to study the propagation of light in
tissue. Flock et al.14 tested the MC results by com-
parison with the diffusion theory. Brewster and
Yamada15 compared measurements with diffusion
theory predictions and MC simulations. Guo et al.16

investigated the characteristics of Gaussian tempo-
rally and spatially profiled laser transport in multi-
dimensional media. However, the MC method is
time consuming, and the results are subject to sta-
tistical error resulting from practical finite sam-
plings. Even with a huge sampling number, it is
hard to obtain precise radiative fields in fine space
and time resolutions with the MC method. In con-
trast, deterministic methods do not experience these
kinds of defects. Among the deterministic methods
that have been used to solve multidimensional hy-
perbolic transient radiative equations, however, the
P1 method dramatically underestimates the light-
propagation speed,7 and the integral formulation8 is
difficult to apply to inhomogeneous and highly aniso-
tropically scattering media.

The DO method has been one of the most widely
applied methods for the prediction of multidimen-
sional steady-state radiative transfer in participating
media.17–19 It has also been extensively developed
for neutron transport processes.20 The DO method
requires a single formulation for invoking higher-
order approximations of DO quadrature sets; it inte-
grates easily into control volume transport codes and
is applicable to the complete anisotropic scattering
phase function and inhomogeneous media. On the
basis of these characteristics, the DO method was
selected in this study for implementation into tran-
sient radiation transport. A literature survey re-
veals that the DO method has not, to our knowledge,
been formulated for analyzing transient laser trans-
port in a multidimensional medium.

In the present study the DO method is formulated
for transient radiative transfer in anisotropically
scattering, absorbing, and emitting media in a 2D
rectangular enclosure. The transient solutions are
compared with existing steady-state solutions for
purely absorbing andyor purely scattering media.

he transient DO method is examined by compar-
son with the MC prediction in a transient
adiative-heat-transfer problem. The influences of
ime step and mesh divisions are examined. Fi-
ally, the transient DO method is applied to predict
hort-pulsed laser transport in a scattering-
ominated turbid medium with properties similar
o those of living tissue. The spatial and the tem-
oral resolutions are as fine as 0.1 mm and 0.1 ps,
espectively, so that the fields of transmittance, re-
flectance, incident radiation, and heat-generation
rate are obtained with high resolution. The char-
acteristics of the transient incident radiation inside
the medium are discussed. The influences of the
absorption coefficient and the optical-fiber location
on the temporal reflectance distribution are exam-
ined. The imaging of a small inhomogeneous zone
inside a turbid medium through the comparison of
temporal transmittance is demonstrated.

2. Mathematical Model

For 2D Cartesian coordinates in a rectangular enclo-
sure, as shown in Fig. 1~a!, the transient radiative-
transfer equation of intensity Ii in the DO direction ŝi
can be formulated as

1
c

]Ii

]t
1 ji

]Ii

] x
1 hi

]Ii

] y
1 bIi 5 bSi,

i 5 1, 2, . . . , n, (1)

where the extinction coefficient b is the sum of the
absorption coefficient k and the scattering coefficient
s; c is light speed in the medium; and Si is the radi-
ative source term,

Si 5 ~1 2 v!Ib 1
v

4p (
j51

n

wjFijIj 1 Sc,

i 5 1, 2, . . . , n, (2)

where scattering albedo v 5 syb, Fij represents scat-
tering phase function F~ŝj3 ŝi!, and Sc is the source
contribution of collimated irradiation. A quadra-

Fig. 1. ~a! Sketch of the system, ~b! control volume.
1 July 2001 y Vol. 40, No. 19 y APPLIED OPTICS 3157
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Table 1. C , Expansion Coefficient Values for the Phase Functions

3

ture of order n with the appropriate angular weight
j is used in the DO method. The scattering phase

function may be approximated by a finite series of
Legendre polynomials as

Fij 5 (
k50

M

Ck Pk~cos f!, (3)

and the argument can be obtained as

cos f 5 ŝi z ŝj 5 jijj 1 hihj 1 mimj. (4)

Ck are the expansion coefficients of the corresponding
Legendre functions Pk. ji, hi, and mi are the three

irection cosines of the DO direction ŝi. The values
of expansion coefficient for phase functions selected
in the present study are listed in Table 1.

The enclosure walls are gray and diffusely reflect-
ing. The diffuse intensity at wall 1 is

Iw 5 ew Ibw 1
1 2 ew

p (
jj,0

ny2

wjIjujj u. (5)

Similarly, we can set up relations for three other
walls. The details about the treatment of boundary
conditions can be found in the literature.17,19,21

The collimated laser sheet is normally incident
upon the center of wall 1 with a width of dc. The
collimated intensity in the medium within the range
of y , ~2dcy2, dcy2! can then be calculated as

Ic~ x, jc, t! 5 I0 exp~2bx!@H~t 2 xyc!

2 H~t 2 tp 2 xyc!#d~jc 2 1!, (6)

here H~t! and d are the Heaviside and the Dirac
elta functions, respectively, and tp and I0 are the

pulse width and incident intensity of the ON–OFF

square laser pulse. The collimated component Sc in
q. ~2! is then written as

Sc 5 ~vy4p!IcF~jcji 1 hchi 1 mcmi!, (7)

here jc 5 1, hc 5 0, and mc 5 0 in the current study.
In the region where no collimated laser irradiation is
passing through, Ic 5 Sc 5 0.

Once the intensity field is obtained, the incident

k

k PF1 PF2

0 1.00000 1.00000
1 2.00917 0.55355
2 1.56339 0.56005
3 0.67407 0.11572
4 0.22215 0.01078
5 0.04725 0.00058
6 0.00671 0.00002
7 0.00068
8 0.00005
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radiation G and the net radiative heat fluxes Qx and
Qy can be attained as

G 5 (
j51

n

wjIj 1 Ic, (8)

Qx 5 (
j51

n

jjwj Ij 1 Ic, (9)

Qy 5 (
j51

n

hjwj Ij. (10)

If the divergence of the total heat flux is desired, we
have

¹ z q 5 k~4Eb 2 G!, (11)

where Eb is the blackbody radiative emissive power of
the medium. For a nonemitting medium such as in
the case of short-pulsed laser radiation transport in
which the emission term can be neglected because of
a cold medium, Eb 5 0. So the radiative-heat diver-
gence field can easily be obtained from the radiation
field.

The transient transmittance at wall 2 and reflec-
tance at wall 1 for scattering–absorbing media ex-
posed to laser irradiation at wall 1 are defined as

T~ y, t! 5
Qx~ x 5 L, y, t!

I0
,

R~ y, t! 5
Qx~ x 5 0, y, t! 2 Ic~ x 5 0, y, t!

I0
. (12)

3. Numerical Solution

To solve the DO Eq. ~1!, the finite-volume approach is
mployed. The enclosure is divided into small con-
rol volumes by Mx 3 My meshes. In each control

volume, as shown in Fig. 1~b!, the spatially and tem-
porally discretized equation can be expressed as

~VycDt!~IPi 2 IPi
0 ! 1 ji~ AE IEi 2 AW IWi!

1 hi~ AN INi 2 AS ISi! 5 bV~2IPi 1 SPi!, (13)

here subscript i is the index of angular discretiza-
tion; subscript P represents the node of a control
volume; subscripts E, W, S, and N stand for the east,
west, south, and north faces of the control volume,
respectively; IPi

0 is the intensity at previous time step;
SPi is the radiative source term at node P; A is the
area of the face; and V is the volume of the control
volume. In 2D geometry, AE 5 AW 5 Dy, AS 5 AN 5
Dx, and V 5 DxDy. The formulation of Eq. ~13! can
easily be extended to a three-dimensional geometry
by addition of another term accounting for the z di-
rection. The first term in Eq. ~13! is the discretized
form of the transient term in transfer equation ~1!,
and it accounts for the light propagation. The other
terms in Eq. ~13! are similar to the steady-state for-
mulation and can be found in the corresponding lit-
erature of steady-state radiative transfer17,19,21 or
steady-state neutron transport.20
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To solve Eq. ~13!, the weighted diamond differenc-
ing scheme has often been introduced17–21:

IPi 5 gy INi 1 ~1 2 gy!ISi 5 gx IEi 1 ~1 2 gx!IWi. (14)

Many types of spatial differencing scheme have been
discussed by many researchers for determining the
values of gx and gy. In the present study the positive
scheme, which was proposed by Lathrop,20 is applied.

The final discretization equation for the cell inten-
sity in a generalized form becomes

IPi 5

1
bcDt

IPi
0 1 SPi 1

uji u
gxbDx

Ixi 1
uhi u

gybDy
Iyi

1
bcDt

1 1 1
uji u

gxbDx
1

uhi u
gybDy

, (15)

here Ixi is the x-direction face intensity where the
beam enters ~5IWi for ji . 0, and 5IEi for ji , 0! and
Iyi is the corresponding y-direction face intensity.
The derivation of Eq. ~15! is well described by Mod-
est21 and Kim and Lee19 for steady-state transfer.
In the current study the two Dt-related terms have
been derived and added. The derivation of those two
Dt-related terms in Eq. ~15! follows in a straightfor-
ward manner from Eq. ~13!. Furthermore, in the
limiting case in which the time step Dt is infinitely
large, Eq. ~15! asymptotes to the steady-state form.
So the present formulation is feasible for both tran-
sient and steady-state radiation transfer. It is
worth noting that, even though the present formula-
tion is for 2D geometry, formulation for the three-
dimensional case is only a simple extension of the
present method with the addition of discretized terms
in the third z coordinate. The terms corresponding
to the z coordinate are analogous to the discretized
terms in the x and the y coordinates.

The solution of the transient radiative field is based
on the advancement of time steps. An initial field of
intensity is specified on the basis of physical reality.
In the present study the initial values of intensity at
all discrete ordinates everywhere in the field are set
equal to zero. The boundary conditions are given for
all directions pointing away from the surface. The
solution procedure is similar to the iterative solution
used in steady-state transfer as described by Mod-
est.21 The differences in the present transient solu-
tion are ~i! the boundary conditions are time
dependent, ~ii! the iteration is substituted by time
dvancing, and ~iii! the properties of the medium may
e time dependent. The present solution is also
uitable for obtaining radiative-transfer solutions for
teady-state problems. It is worth mentioning that,
hen the transient solution is used to solve a steady-

tate problem, the transient solution is expected to be
ore stable than the iterative steady-state solution.
his feature is just like the transient computational
uid dynamics ~CFD! scheme.
False numerical diffusion is introduced in the so-

ution, owing to the finite discretizations in space and
n time in Eq. ~13!. To eliminate the numerical dif-
usion, the space and the time steps are required to be
s fine as possible. Consequently, the CPU time will
ncrease. There should be a compromise between
omputation cost and solution improvement by selec-
ion of finer space and time grids. Fiveland17

showed that the spatial differential step should sat-
isfy the following limitation:

Dx , uji uminyb~1 2 gx!, Dy , uhi uminyb~1 2 gy!.

(16)
For transient radiative transfer, in addition to in-
equality ~16!, a limitation on time step should also be
imposed. Since a light beam always travels in a
velocity c corresponding to the speed of light in the

edium, the traveling distance cDt between two
neighboring time steps should not exceed the control
volume spatial step, i.e., cDt , Min$Dx, Dy%. Thus, if
we introduce the nondimensional time variable t* 5
bct, we have

Dt* , MinH uji u
1 2 gx

,
uhi u

1 2 gy
J . (17)

It is worth noting that the source term SPi in Eq.
~15! is computed from the latest known intensity val-
ues by use of Eqs. ~2! and ~7!, so it is a mixed scheme
f current and previous time steps. Therefore the
umerical scheme for time discretization is not fully

mplicit.
The choice of quadrature scheme in the DO method

s arbitrary. In the present calculations the S–12
pproximation ~n 5 84, which computes 84 fluxes
ver the hemisphere! is used. The values of DO
uadrature sets and weights can be found in Table 2
f Fiveland.18 The S–12 accuracy in dealing with

the anisotropic scattering phase function was also
checked by Fiveland.18 For highly anisotropic phase
functions a higher-order S–N approximation should
give better results. However, a higher-order ap-
proximation requires finer control volume meshes
and finer time step. Consequently, the computation
becomes more prohibitive.

4. Results and Discussion

First, the transient DO method is applied to a square
enclosure with cold, black walls and a purely absorb-
ing medium that is suddenly raised to and main-
tained at an emissive power of unity. The predicted
surface-heat fluxes at different time instants for
three different absorption coefficients are plotted in
Fig. 2 and compared with exact solutions22 in steady
state. It is seen that the heat flux increases as the
time proceeds. After t* 5 5.0, the transient results
show an excellent match with the exact solutions in
steady state. The nondimensional positions are de-
fined as x* 5 xyL and y* 5 yyW in the current paper.

Second, a boundary incident problem in a square
enclosure is studied, where wall 1 is suddenly heated
and maintained at a hot temperature with unity
emissive power, but all other walls and the medium
are kept cold. The medium is strong forward aniso-
tropically scattering with nine terms of the Mie phase
function PF1 ~see Table 1!, and the asymmetry factor
1 July 2001 y Vol. 40, No. 19 y APPLIED OPTICS 3159
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g is 0.66972. The nondimensional incident radia-
tion and net heat fluxes along the centerline ~y* 5
1y2! are displayed in Fig. 3 for different time stages.
The circles are the values predicted with the steady-
state S–14 DO method.19 As time advances, it is
seen that the radiation propagates to the larger x end.

he transient results gradually approach the steady-
tate solutions. The minor difference between the
teady-state solution and the transient solution at t*

8.0 may be attributed to the different-order approx-
mations used in the two solutions.

The transient DO method is again verified by com-
arison with the MC prediction for an isotropically
cattering medium with black walls. Wall 1 is as-
umed to be hot and irradiated diffusely; other walls
nd the medium are cold. Other parameters are L 5

5 10 mm, k 5 0.001 mm21, and s 5 1.0 mm21.

Fig. 2. Transient DO prediction of surface heat flux for a purely
absorbing medium and comparison with exact solution.22

Fig. 3. Transient DO predictions of incident radiation and radi-
ative heat flux for a purely anisotropically scattering medium and
comparison with S–14 steady-state solution.19
160 APPLIED OPTICS y Vol. 40, No. 19 y 1 July 2001
The temporal distributions of transmittance at three
different locations are shown in Fig. 4. The values of
DO sets can be found in a textbook21 for S–8 approx-
imation and in Fiveland18 for S–10 approximation.
The MC results in the current paper are calculated on
the basis of the algorithm developed by Guo et al.16

It is seen that the transient DO results are in excel-
lent agreement with those predicted by the MC
method. For an isotropically scattering medium,
even a lower-order DO approximation ~S–8! can pre-
dict accurate results.

The influence of time step in the transient DO
method is illustrated in Fig. 5, where the temporal
profiles of transmittance at the center of wall 2 are
plotted. The geometry of the medium is L 5 W 5 10
mm. The medium is anisotropically scattering with
phase function PF1 and k 5 0.001 mm21 and s 5 3.0
mm21. Wall 1 is hot and irradiated diffusely; other
walls are cold and diffusely reflected with reflectivity
r 5 0.5. The equivalent isotropic scattering coeffi-
cient is then sI 5 3.0 3 ~1 2 g! mm21, and the
nondimensional time t*I is defined as ~sI 1 k!ct. For

Fig. 4. Comparison of temporal transmittance profiles between
DO and MC methods in a square isotropically scattering medium
with one hot wall.

Fig. 5. Influence of time step and comparison of equivalent iso-
tropic scattering results with the direct anisotropic scattering sim-
ulations in transient radiation transport.
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anisotropic scattering modeling, the square medium
is divided into 202 3 202 meshes, whereas 102 3 102

eshes are used for equivalent isotropic scattering
odeling. We found that a grid of 102 3 102 meshes

an also predict reasonably accurate temporal trans-
ittance for anisotropic scattering. It is seen that,
hen inequality ~17! is broken ~Dt*I 5 0.5!, the pre-
icted transmittance shape is significantly different
rom the accurate one because of large numerical
iffusion, and the transmitted light is dramatically
elayed. As Dt*I decreases, the peak position will

shift to a shorter time scale, which means that the
numerical light-propagation speed will be closer and
closer to its real value c. Accurate temporal shape of
transmittance can be obtained for anisotropic scat-
tering modeling around Dt*I 5 0.02. Since the atten-
uation coefficient of equivalent isotropic scattering
modeling is ;1y3 that of directly anisotropic scatter-
ing modeling, it is seen that the nondimensional time
step for isotropic scattering can be two or three times
larger than that of corresponding anisotropic scatter-
ing. More importantly, it is found that the equiva-
lent isotropic scattering results match closely the Mie
phase function anisotropically scattering predictions
except at the early time stages. This finding is con-
sistent with our previous finding for a forward-
scattering medium with the Henyey–Greenstein
phase function.23

In Figs. 6–8 ultra-short-pulsed laser transport in a
turbid medium is investigated. The enclosure is L 5
0 mm and W 5 29.9 mm. The medium properties
imilar to those of living tissue with refractive index
f 1.40, k 5 0.001 mm21, and s 5 1.226 mm21. The

scattering phase function is PF2 ~see Table 1!. In-
ternal reflection is not considered, because boundary
is matched when the optical fibers are inserted into
the body containing the medium. The spatial width
of the incident impulse laser is dc 5 0.1 mm ~to sim-

late a laser imposed through a 100-mm optical fiber!.
he control volume size is 0.1 mm 3 0.1 mm to sim-
late precisely the transient laser transport in fine

Fig. 6. Nondimensional incident radiation profiles along the cen-
terline at various time instants for a medium subject to ultra-
short-pulsed laser irradiation.
imensions and to simulate detectors by use of small
ptical fibers. The time resolution is Dt 5 0.1 ps. It
hould be noted that the precise prediction of radia-
ion field at such fine space and time resolutions is of
ignificance in many practical applications, and this
s a tough task for MC methods.

Figure 6 shows the nondimensional incident radi-
tion along the centerline ~y* 5 0! at various time

instants. It is clearly seen that the sudden peak,
which represents the ballistic component of the laser,
propagates from small to large x as time advances,
and the peak value is exponentially reduced. The
position of the peak is equal to the flight distance of
the laser. The diffuse component that is due to mul-
tiple scattering also forms a second maximum inci-
dent radiation along the x direction. This diffuse
peak propagates from the small x to the center of the
x axis with a speed much lower than light speed. As
time proceeds, the value of the incident radiation
becomes increasingly small. At long time stages,
the profile of the incident radiation along the x axis is
nearly symmetric.

The profiles of nondimensional incident radiation

Fig. 7. Nondimensional incident radiation profiles along the y
irection near the laser incident surface at various time instants.

Fig. 8. Influences of absorption coefficient and detector position
on the temporal reflectance profiles.
1 July 2001 y Vol. 40, No. 19 y APPLIED OPTICS 3161
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along the y direction at a location near the laser
incident surface are demonstrated in Fig. 7 for dif-
ferent time instants. It is seen that the incident
radiation is confined in a small region at early time
instant ~t* 5 1!. As time increases, the confined
region becomes increasingly large, but the magnitude
of the intensity becomes smaller and smaller. The
incident radiation at the larger y* position ~far from
he laser incident point! is always lower than that at
he smaller y* position ~near the laser incident point!
n the whole transient time domain.

The influence of the absorption coefficient on the
emporal reflectance profile is shown in Fig. 8, where
hree optical-fiber detector positions ~y 5 1, 6, 12

mm, respectively! are also compared. It is seen that
a small increase in the value of the absorption coef-
ficient will result in a corresponding deduction of the
reflectance because of the decrease of multiple-
scattering events. The logarithmic slope of the re-
flectance versus the time is different for different
absorption coefficients. At long time stages, how-
ever, each absorption coefficient corresponds to a log-
arithmic slope. Hence the slope contains the
information of absorption coefficient. When the de-
tector is only 1 mm from the laser incident point ~y 5
1 mm!, the maximum reflectance value and its time
position are nearly unchanged for the three different
absorption coefficients. However, after passing the
peak, the reflectance decreases rapidly for a larger
absorption coefficient. When the detector is 12 mm
away, however, the magnitude of the reflectance is
usually decreased by several orders at early time
stages. At long time stages, the difference is ;1
order of magnitude. Generally, the peak reflectance
position shifts to small time with the increase of ab-
sorption coefficient.

Finally, the imaging of an inhomogeneous zone in-
side a strongly scattering turbid medium is investi-
gated. The turbid medium is assumed to be in a
square enclosure, shown in Fig. 1~a! with L 5 W 5
10.1 mm, k 5 0.01 mm21, and the reduced scattering
coefficient sI 5 1.0 mm21. A small inhomogeneous
one is located at the center of the square with L1 5

W1 5 1.1 mm, k 5 0.2 mm21, and sI 5 1.2 mm21.
The spatial width of the incident pulse is dc 5 0.1
mm, and the pulse duration is 1 ps. The control
volume is 0.1 mm 3 0.1 mm, and the time resolution
s Dt 5 0.1 ps. It is assumed that there is no change
f refractive index between the turbid medium and
he inhomogeneous zone. The study is analogous to
he imaging of a tumor inside tissues.

The shapes of the logarithmically varied temporal
ransmittance at different detector locations are com-
ared in Fig. 9 between the homogeneous medium
nd that with the presence of an inhomogeneous zone
t the center. Profile differences between the homo-
eneous medium and the inhomogeneous one are ob-
ious. At the location ~x 5 1, y 5 0! the
ransmittance rises at the time t 5 10.1 mmyc ' 47
s, which is exactly the shortest flight time of light
assing through the medium without interaction
ith the medium. With or without the inhomogene-
162 APPLIED OPTICS y Vol. 40, No. 19 y 1 July 2001
ty, the earliest rising time does not change. How-
ver, after the pulse passes through the medium, the
ifference of transmittance at the location ~1, 0! be-
ween the homogenous medium and that with inho-
ogeneous zone is distinct. The presence of a small

nhomogeneity results in a large decrease of the
ransmittance magnitude. Even if the detector is
ocated at other locations where the direct line be-
ween the incident spot and the detector does not
ass through the inhomogeneity, such as at ~0.75, 0.5!
nd ~1, 0.25!, such a decrease is also observable. By
etecting the temporal signals at various locations,
e can decide the location and size of the inhomoge-
eity.

5. Conclusions

The discrete-ordinates ~DO! method is developed to
study transient radiative transfer in two-dimensional
~2D! anisotropically scattering, absorbing, and emit-
ting media subject to diffuse andyor collimate short-
pulsed laser irradiation. The transient formulation
is feasible for both transient and steady-state radia-
tive transfer. The present solution is verified by
comparison with the existing published results
andyor with the Monte Carlo ~MC! simulation for a
variety of example problems. It is found that the
present method is accurate and efficient.

The temporal distribution of transmittance in
equivalent isotropic scattering modeling is found to
match reasonably the predictions of direct modeling
of strong forward anisotropic scattering with trun-
cated Legendre polynomials phase function in most of
the transient domain except at the regime of early
time instants where the isotropic modeling overesti-
mates the transmittance.

The transient DO method is applied to study the
characteristics of ultra-short-pulsed laser interaction
and propagation within turbid media. It is found
that the ballistic component of the laser propagates
with the speed of light in the medium, and its value
is reduced dramatically with the advance of propaga-
tion. The diffuse component that is due to multiple

Fig. 9. Comparison of the temporal transmittance profiles at dif-
ferent positions between the homogeneous medium and the me-
dium with a small inhomogeneous zone.



of Mechanical Engineers, Pittsburgh, Pa., 2000!, Paper
scattering also forms a second maximum incident
radiation inside the medium, and the peak propa-
gates with a speed much lower than the speed of
light. A small increase of the absorption coefficient
in the medium results in an applicable deduction of
the reflectance and transmittance. The broadening
shape of the temporal transmittance and reflectance
is strongly influenced by the absorption coefficient
and the detector location. Differences in the tempo-
ral transmittance shape between the homogeneous
medium and the medium with an inhomogeneous
zone are distinct. The difference is varied according
to the relative positions between the inhomogeneous
zone, the detector, and the incident laser.
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