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ABSTRACT 

Radiative heat transfer in three-dimensional nonhomogeneous participating medium was 
investigated by using REM 2 method. The anisotropic scattering phase function was dealt 
with the scaling technique based on delta function approximation. The three-dimensional 
scaled isotropic results were compared with the published anisotropic scattering 
computations. A good agreement between the scaled isotropic approaches and the 
anisotropic solutions was found. The effects of scattering albedo, forward fraction of phase 
function, and wall emissivity were discussed. It was found that, with the increase of the 
scattering albedo, the radiative heat flux increases for forward scattering media, but 
decreases for backward scattering media. The radiative heat flux is increased with the 
increases of forward fraction of phase function and wall emissivity. The emissive power at 
the center of a cubical nonhomogeneous medium in radiative equilibrium with gray diffuse 
walls equals to the averaged blackbody emissive power of the six walls. 
© 1999 Elsevier Science Ltd 

Introduction 

Radiative heat transfer in three-dimensional nonhomogeneous participating media is a problem of 

practical significance with wide applications to such systems as industrial furnaces and combustion 

chambers. Anisotropic scattering from particulate matter is usually a basic feature in such kinds of 

systems. As Kim and Lee [1] point out, however, full anisotropic modeling of multidimensional radiative 

transfer in an anisotropic scattering medium requires a large amount of computer time and storage. 

Scaling is a widely used scheme for obtaining rapid yet accurate radiative transfer results for anisotropic 

scattering media. Lee and Buckius [2] have shown that scaling laws allow some anisotropic scattering 

problems to be reduced to, and solved as, isotropic scattering problems. 

There have been many attempts at scaling the complex anisotropic scattering problem. Wiscombe [3] 

has proposed the ~ M  method for scaling the phase function into either isotropic or simple anisotropic 
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scattering. The delta-Eddington approximation is developed by Joseph et  al. [4]. An excellent review by 

McKellar and Box [5] has summarized the previous works on scaling techniques. Recently, radiative 

transfer in a planar medium with anisotropic scattering is scaled to an isotropic scattering problem by the 

P~ approximation [2], in which the accuracy of the scaling laws for one-dimensional problem has been 

demonstrated. More recently, scaled isotropic scattering solutions are compared with the full anisotropic 

scattering solutions of the radiative heat transfer in a two-dimensional homogeneous medium by Kim and 

Lee [1]. The isotropic scaling approximation was found to predict accurately the radiative heat flux. 

Maruyama [6] has applied the zeroth-order delta function approximation using REM 2 method for the case 

of plane parallel system with very good accordance with the exact solution even for strong forward or 

backward scattering particles. A literature survey reveals, however, that the isotropic scaling 

approximation has not been compared with the anisotropic scattering solutions in three-dimensional 

media. Moreover, nonhomogeneous medium was not considered in the previous multi-dimensional 

scaled isotropic calculations. It is necessary to verify the scaled isotropic scattering radiative heat transfer 

in three-dimensional nonhomogeneous media. 

The calculation of radiative heat transfer in complex three-dimensional configurations is still a 

difficult task. When the discrete ordinate method is applied to a complex 3D engineering model, for 

example, the ray effect [7] is unavoidable. Among numerous solution methods, the radiation element 

method by ray emission method, REM e, is flexible to deal with arbitrary three-dimensional geometry. 

The REM 2 method developed by Maruyama [8] and Maruyama and Aihara [9] may analyze radiative 

transfer in participating media and specular and/or diffuse surfaces in arbitrary configurations as easily as 

the finite element analysis. This method has been applied to complex configurations such as a large 

device for the research of a fusion reactor [10], and Czochralski and floating zone furnaces for crystal 

growth [11,12]. The REM 2 method has been developed to incorporate nongray and anisotropic scattering 

properties by Maruyama et al. [13] and Guo and Maruyama [14]. However, an instinctive limitation in 

REM 2 method is that it requires an isotropic scattering phase function, while most scattering particles are 

anisotropic scattering media. This limitation may be overcome by using isotropic scaling technique, 

which also motivates the present study. 

In this treatise, the isotropic scaling radiative heat transfer in a three-dimensional nonhomogeneous 

medium with anisotropic scattering and absorbing and emitting is investigated using the REM 2 method. 

The zeroth-order delta function approximation is used to scale the anisotropic scattering into isotropic 

scattering. The accuracy of the scaled isotropic calculations is verified by comparison with the available 

published solutions of anisotropic scattering. The effects of scattering albedo, forward fraction of phase 

function, and wall emissivity on radiative heat transfer are discussed. A relationship, which is valid for 

homogeneous medium covered with black walls, is examined for nonhomogeneous medium with gray 

diffuse walls. 
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Mathematical  Model 

The phase function may be expressed in terms of Legendre polynomials as 

• (/.t) = ~ a.P. (cos//)  (I) 
n---O 

For many calculations the above expression is so complicated that so-called Dirac-delta approximation is 

adopted as follows: 

~( / l )  -- 2f6(1 - cos / t )  + (1 - f ) ~ *  (fl) (2) 

The approximate phase function is expressed as a truncated Legendre series, 

M 

qb* (/2)= 1 + Z a ~  P, (cost/) (3) 
n=l  

If ~" is to be isotropic, i.e., M = 0, the forward fraction of the phase function is then f = a j / 3 ,  and the 

phase function is approximated by 

• (/.t ) - 2f•(l - cos/.t) + (1 - f )  (4) 

For any given anisotropic scattering phase function, we can scale it into isotropic scattering as follows: 

/3" = f l ( 1 -  f ~ ) ,  fff _ ~ ( 1 -  f )  (5) 
1 - f ~  

After introducing the scaled isotropic phase function, the equation of radiative transfer in absorbing, 

emitting and scattering gray medium can be written as 

[, l d/(?,Og)dS - -fl* (?,og)+(l-a')lb(T)+ l(?,co')doY . (6) 

We assume that the scattering radiation is distributed uniformly over a radiative element, and 

introduce an averaged diffuse radiant intensity I ° [6]. The equation of transfer can be expressed by 

d/(7,o9) = ft. [_ 1(~,o9) + (1 - ~*)1 h (T) + ~*1 o ]. (7) 
dS 

If the scaled albedo ~* is redefined as f~D and the specular reflectivity of surface element f~s is 

defined, a generalized form of the radiant energy of element i, which may be either a volume or a surface 

element, can be expressed as 

L,[' 
£o. 

where ~i dS >> l stands for a surface element and ~ s  = 0 for a volume element, respectively. 

To simplify the integration in Eq. (8), an effective radiation area Ai R is introduced: 

Ar= l fn"  aA (.01_ Cl -  exp(-J~ fli*dS)]d°gdA=lfar:A'('~)II-exp(-~o flldS)] d°9 (9) 
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where an averaged thickness of the radiation element in the direction~ is set to be S ~ V / A(.~). The rate 

of radiation energy emitted and scattered isotropically by the radiation element can be expressed in a 

generalized form as 

QJ.i =- Ag(EiEh.i +£'~DGi) (10) 

where e i = l - f ~ i  ° _ ~ s ,  Eh.i =~zlh.,, G~ =Trl~ ° , and Qj.~ is the diffuse radiation transfer rate. The net 

rate of heat generation can be derived from the heat balance on the radiation element as 

Qx,i =aiREi(Eh.i-Gi) • (11) 

The emissive power of element is defined as Qri  = A~REYb.~ • If a system is consisted of N elements, 

then Eqs. (10) and (11) can be rewritten as 

N 

Qg,i =Qr.i+~.~Fj,°iQJ,j 
j=l (12) N 

Q x . i : Q r . i - ~ , ~ F j ~ Q j , j  
j=l  

in which, the absorption view factor F a ~.j and diffuse scattering view factor E ° ~,j are introduced as 

defined by Maruyama and Aihara (1997). Either the heat transfer rate of emissive power Qr.i or the net 

rate of heat generation Qx.~ for each radiation element can be specified as a boundary condition. The 

unknown: Qx,i and Qr.~ can be attained by solving Eq. (12). Each radiation element is assumed to be 

homogeneous, but the medium as a whole may be nonhomogeneous. The view factors are calculated by 

using ray tracing method based on ray emission model as described by Maruyama and Aihara [7]. The 

discrete directions were distributed uniformly over the entire solid sphere. 

Resu l t s  and  Disct tss ion 

Evaluat ion  of Scaled lsot ronic  Results 

The scaled isotropic results of radiative transfer in a cubic nonhomogeneous medium are evaluated 

by benchmark comparisons with the anisotropic scattering predictions by YIX and Monte Carlo methods 

[ 15]. The optical thickness (z = extinction coefficient times the side length) distribution is given by 

- J't 
A linear anisotropic scattering phase function is assumed: 

• (U)= ! + a ,~  ( c o s t )  (14) 

where P~ is the first-order term of Legendre series. 
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TABLE 1 

Conditions of Different Benchmark Cases 

CASE Q a~ Constants in Eq. (13) Boundary conditions 

C1 0.9 I. a = 0.9, b = 0.1 i hot/5 cold walls 
C2 0.9 -1. a = 0.9, b = 0.1 1 hot/5 cold walls 
C3 0.9 1. a = 5.0, b = 5.0 1 hot/5 cold walls 

J_ 

TABLE 2 

Comparison of the surface heat flux at x = -0.5 and y = 0 for cases C 1 and C2, based on 

the present, YIX, and Monte Carlo methods. 

CASE 

z Present 
-4/9 0.98482 

-3/9 0.97806 
-2/9 0.97217 
-1/9 0.96776 

0 0.96572 

C! C2 

YIX 

0.98586 

0.98112 

0.97706 
0.97360 
0.97170 

M.C.  

0.98490 

0.98010 
0.97620 
0.97310 
0.97170 

Present 
0.97130 

0.95909 
0.94838 
0.94044 

0.93672 

YIX M.C. 
0.96680 0.96560 

0.95218 0.95100 
0.93944 0.93870 
0.92947 0.92950 
0.92465 0.92530 

TABLE 3 

Comparison of the emissive powers at y = z = 0 for cases CI and C2, based on 

the present, YIX, and Monte Carlo methods. 

CASE 

x Pesent 
-4/9 0.46364 
-3/9 0.36786 

-2/9 0.28652 
-1/9 0.21962 

0 0.16637 
1/9 0.12672 
2/9 0.09785 
3/9 0.07552 
4/9 0.05814 

Cl c2 

YIX 
0.50679 

0.36282 
0.28177 
0.22135 
0.17049 
0.11959 
0.09547 

0.06832 
0.06417 

M.C.  

0.46100 

0.36640 

0.28420 
0.21830 
0.16650 
0. ! 2580 
0.09642 
0.07516 
0.05986 

Present 

0.47412 
0.37744 

0.29368 
0.22364 
0.16644 

0.12212 
0.09108 
0.06842 
0.05160 

YIX 

0.52294 
0.37710 

0.29267 
0.22730 
0.17050 
0.11505 
0.08914 
0.06159 
0.05795 

M.C.  

0.47660 
0.37990 

0.29450 

0.22430 
0.16640 

0.12120 
0.08987 
0.06820 
0.05326 

The coordinate origin lies at the center of the cube and the side length of the cube is unity. The 

constants in Eqs. (13) and (14), the scattering albedo and boundary conditions for bench mark 

comparisons are listed in Table 1. Cases CI and C2 represent forward and backward scatterings in an 

intermediate optical thickness medium, respectively, while case C3 represents an optically thick medium. 

For all cases, the hot wall is set at x = -0.5, in which unity blackbody emissive power is given. All the 

walls are black. The medium is assumed to be in radiative equilibrium. The dimensionless variables in 

the following sections are defined by the side length (L) of the cube and the possible maximum heat flux 
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( O" T 4 ) at the hot face. 

In all cases, the cubic medium is divided into 9 × 9 × 9  volume elements and each wall has 9 × 9  

surface elements. In case C3, an additional solution is obtained for 19×19x19  volume elements in 

order to improve the accuracy. 

For cases C1 and C2, the predicted surface heat flux and emissive power are given in Tables 2 and 3 

respectively. Comparisons are performed among the scaled isotropic calculations by REM 2 method and 

the published anisotropic results by YIX and Monte Carlo methods [15]. The general difference of the 

radiative heat flux between the present scaled approach and the Monte Carlo and YIX methods are 1%. 

The difference of the emissive power between the scaled results by REM 2 method and the anisotropic 

results by Monte Carlo method is less than 1%. The differences between the present approach and Monte 

Carlo method are smaller than the differences between the YIX and Monte Carlo methods in Table 3. As 

Hsu and Farmer [15] pointed out, this may be attributed to the ray effect occurring in YIX solutions. In 

the present approach, 2141 rays are employed in all computations to minimize the ray effect. While only 

288 discrete directions were used in YIX method. 

Table 4 summarizes the results for case C3 obtained based on the present method along with the 

available data by YIX and Monte Carlo methods. Two element grids are adopted in the present method. It 

is found that the present scaled results are in good agreement with the predictions of YIX and Monte 

Carlo methods. In the case of 9 × 9  ×9 volume element grid, the averaged relative error between the 

present heat flux and those of Monte Carlo is 3%. When a finer element grid (19 × 19 x 19 ) is used, the 

averaged difference between the present approach and the Monte Carlo method is 1%. The difference of 

emissive power between those methods is larger than that of surface heat flux, but still in a range of 2%. 

From the above comparisons, we may conclude that the scaled isotropic results are in good 

agreement with the anisotropic scattering calculations for three-dimensional nonhomogeneous absorbing, 

emitting and scattering media. The ray effect, which is often occurred in numerical methods with discrete 

directions, may be minimized in the REM 2 method since a large number of rays can be employed. 

All the computations are performed with a VT-Alpha/533 personal computer. The CPU time in 

REM 2 method is consisted of two parts. One is the CPU time for the calculation of view factors, which is 

linearly proportional to the ray emission number in a personal computer. Another part is the CPU time 

used for the solution of Eq. (12), which is a main contribution to the total CPU time, especially in the 

case of a large number of radiation elements. In case C I, a total of 1215 radiation elements are employed 

and the ray emission number for each element is 2141. The calculation CPU time is 265 seconds, in 

which 44 seconds is consumed by the ray tracing process, and 221 seconds is used for the solution of Eq. 

(12) which involved two matrix inversions [8]. If the computational domain is axisymmetric, we may 

introduce the perfectly reflected elements along the axes, so that the number of radiation elements can be 

reduced. For example, we can introduce two perfectly reflected surfaces along the faces of y = 0 and z = 
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0 in the case of C 1. The one-fourth computational domain can be divided into 9 × 5 x 5 volume elements. 

The total CPU time is considerably reduced to 14 seconds. 

TABLE 4 

Comparison of the present, YIX, and Monte Carlo methods for case C3: 

(a) surface heat flux at x = -0.5 and y = 0; (b) emissive power at y = z = 0. 

Pesent (Scaled) Present (Scaled) YIX (LAS) M.C. (LAS) 

9 x 9 x 9 v o l .  elements 1 9 x l 9 x l 9 v o l .  elements 27 x 27 x 27 grid 9 x 9 x 9  grid 

-4/9 0.73200 

-3/9 0.63548 

-2/9 0.58101 

-1/9 0.55319 

0 0.54255 

0.71832 

0.61577 

0.56258 

0.53305 

0.52257 

0.72862 

0.62774 

0.57357 

0.54266 

0.53151 

0.73260 

0.62550 

0.56670 

0.53450 
0.52340 

Pesent (Scaled) Present (Scaled) YIX (LAS) M.C. (LAS) 

9 x 9 × 9 v o l .  elements 1 9 x l 9 x l 9 v o l .  elements 27 × 27 x 27 grid 9 x 9 × 9  grid 

-4/9 0.61976 

-3/9 0.46434 

-2/9 0.33998 

-i/9 0.24207 

0 0.16659 

1/9 0.11075 

2/9 0.07287 

3/9 0.04683 

4/9 0.02882 

0.6349 I 

0.47553 

0.34668 

0.24506 

0.16653 

0.10880 

0.07037 

0.04437 

0.02566 

0.64099 

0.47755 

0.34883 

0.24702 

0.16740 

0.10854 

0.06940 

0.04358 

0.02548 

0.64420 

0.48220 

0.35100 

0.24700 

0.16640 

0.10760 

0.06878 

0.04310 

0.02484 

Parameter  Influence 

Study of the influence of parameters such as the wall emissivity, scattering albedo, and forward 

fraction of phase function is sparse for three-dimensional nonhomogeneous medium. In order to 

investigate the influence of radiative parameters on the radiative heat transfer, we still consider the unit 

cube model specified above, but with a = 1.0 and b = 1.0 in Eq. (13). 

The effect of wall emissivity is illustrated in Figs. ! (a) and (b). From Fig. 1 (a), it is seen that the 

increase of wall emissivity will increase the heat flux losses at the hot face as well as the heat flux gains 

at the cold face. This can be easily understood by the fact that the emission and absorption of the wall is 

proportional to its wall emissivity. It is seen from Fig. I (b) that, with the increase of wall emissivity, the 

emissive power in the medium near the hot face (x < 0) increases. While a reverse effect near the cold 

face (x > 0) is found. A constant value of emissive power is found to be 0.1665 at x = y = z = 0 for 

various wall emissivities. It should be noted that all the walls have the same emissivity. The increase of 

emissive power near the hot face is due to the increase of heat losses at the hot face. In order to maintain 
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FIG. I 

Effect of  wall emissivity. (a) emissive power at y = z = 0; (b) radiative heat flax. 

a heat balance, the emissive power of the medium near the hot face has to increase. The decrease of  

emissive power in the medium near the cold face is due to the fact that the emissive power at the hot face 

increases, but the emissive power at the cold face is always zero for all cases. This means that the 

emissive power gradient along the x-axis increases. Thus, a decreased emissive power is found in the 

medium near the cold face. 

The influence of scattering albedo is discussed in Figs. 2 (a) and (b), in which the surface heat flux 

distributions at the hot face and cold face are displayed. A forward scattering medium is employed in Fig. 

2 (a). It is seen that the increase of  scattering albedo will increase the heat flux losses as well as the heat 

flux gains. This is because the increase of scattering albedo increases the forward scattering radiation. So 

that it is easier to transfer radiation energy from the hot face to the cold face, which results in the 

increase of  surface heat flux. In the case of  a backward scattering medium as in Fig. 2 (b), the radiation 

from the hot face will be reflected back by the medium. The increment of  scattering albedo increases the 

reflected radiation, which results in the decrease of the surface heat flux. 

The forward fraction f of  scattering phase function also influences the radiative heat transfer. A 

positive value of  f means a forward scattering, while a negative value represents a backward scattering. 

The larger the absolute value, the stronger the forward or backward scattering. The influence of  f is 

inspected in Figs. 3 (a) and (b). From Fig. 3 (a), it is seen that, the stronger the forward scattering, the 

larger the heat flux. A strong backward scattering decreases the surface heat flux. These can be explained 

from Eq. (5), in which the scaled extinction coefficient decreases (or increases) with the increase (or 

decrease) off .  As a result, the heat flux increased (or decreased). The effect o f f  on the emissive power of 

the medium is demonstrated in Fig. 3 (b). It is found that, a forward scattering will decrease the emissive 
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Effect of  forward fraction of  phase function. (a) emissive power at y = z = 0; (b) radiative heat flux. 

power of  the medium near the hot face, but increase the emissive power of  the medium near the cold face. 

The effects for the backward scattering medium are reversed. 

For a cubic gray medium in radiative equilibrium with black isothermal walls, the temperature at the 

center of  the cube is analyzed by Crosbie and Schrenker [16] and can be expressed by 

6 
T f l  = X ~ 4 ] 6  ( 1 5 )  

i=1 

in which, To is the temperature at the center of  the cube and T,.'s (i = 1 to 6) are the temperatures at six 

walls. We found that the above relationship is valid for nonhomogeneous cubic medium if the extinction 
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coefficient profile is axisymmetric. Equation (15) is also valid for gray diffuse isothermal walls if all the 

walls have the same radiational property. Table 5 summarizes some representative calculations. Equation 

(15) may be valid for anisotropic scattering medium since the scaled isotropic results at the cube center 

are in excellent consistency with the anisotropic predictions in the previous bench mark problems. 

However, a further analysis is necessary. 

TABLE 5 

Comparison of calculated and analyzed temperatures at the center of cubic nonhomogeneous media. 

o-T14 o-T 4 a T  4 a T  4 o-T 4 o-T 4 

1 0 0 0 0 0 0.1665 + 0.0005 

1 1 0 0 0 0 0.3337 + 0.0005 

1 1 0.5 0 0 0 0.4172 + 0.0005 

1 0.5 0.5 0.5 0 0 0.4165 __+ 0.0005 

1 0.8 0.6 0.4 0.2 0 0.5003 + 0.0005 

1 I 1 0.5 0.5 0.5 0.7500 + 0.0005 

o'T o (calculated) o'T o (exact) 

I/6 

I/3 

5/12 

5/12 

1/2 

3/4 

Conclusions 

The scaled isotropic scattering radiative heat transfer in a three-dimensional nonhomogeneous 

medium is numerically investigated. The scaled isotropic results are compared with the anisotropic 

scattering results. A good agreement is found between these two approaches. The radiative heat transfer 

is strongly influenced by the radiative property parameters such as the wall emissivity, scattering albedo 

and forward fraction of phase function. The surface radiative heat flux increases with the increases of the 

forward fraction of phase function and the wall emissivity. With the increase of scattering albedo, the 

radiative heat flux increases for forward scattering media, while a decrease of heat flux is found for 

backward scattering media. The emissive power in the medium near hot face increases with the increase 

of wall emissivity or the decrease of forward fraction. However, a reverse effect was found in the 

medium near the cold face. The temperature at the center of a cubical nonhomogeneous medium in 

radiative equilibrium with gray diffuse walls can be analyzed by the relationship of equation (15). 

Ai R 

Eh 

f 

F A 

Nomenclature 

effective radiation area, Eq. (9) 

blackbody emissive power 

forward fraction of phase function, Eq. (2) 

absorption view factor from element i t o j  
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F D 
i,j 

1 

Qr 

aJ 

ax 

S 

T 

x,y,z 

E 

d~ 

~n 

~s  

CO 

tY 

diffuse scattering view factor from element i to j  

radiation intensity 

heat transfer rate of emissive power 

heat transfer rate of diffuse radiosity, Eq. (10) 

net heat transfer rate of heat generation, Eq. (11) 

path length through an element 

temperature 

Cartesian coordinates 

extinction coefficient 

emissivity, -= 1-f2D-~ s 

scattering phase function 

aibedo of a volume element or diffuse reflectivity of a surface element 

specular reflectivity 

solid angle 

Stefan-Boltzmann constant 
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