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ABSTRACT 
Advances in MEMS/NEMS techniques have enabled high-

Q whispering-gallery modes in integrated microcavities. 
Potential applications of optical microcavities include quantum 
informatics, novel micro/nano sources, dynamic filters, and 
micro/nanosensors.  It is important to understand the intrinsic 
resonant modes of a cavity. In this report, we will analyze 
whispering-gallery modes in resonators of planar structure 
which is common in MEMS devices. The wave equation is 
solved by using the method of separation of variables with 
appropriate boundary conditions. Analytical formulations are 
established. The resonance frequencies as well as the electric 
field distributions in exemplary resonators are presented for a 
variety of whispering-gallery modes. 

INTRODUCTION 
The concept of whispering-gallery (WG) modes was first 

introduced by Rayleigh to elucidate why sound waves travel 
more efficiently along the inside wall of a circularly-shaped 
structure.1 When WG modes occur in optical wavelength range, 
the resonator can be shrunk to the micrometer level.  In 1961 
Garrett et al.2 at Bell Labs reported the observation of optical 
WG modes in spherical CaF2 particles doped with Sm++ which 
were illuminated by a high-pressure xenon flashtube.  In 1987 
Braginsky and Ilchenko3 generated high-Q WG modes in 
fused-silica microspheres. In recent years ultrahigh-Q (>109) 
has been reported,4 and optical microcavities have received 
increasing attention due to their high potentials in quantum 
informatics,  novel micro/nano sources, dynamic filters, and 
micro/nanosensors

5

.6
The extraordinary demand for integrated techniques and 

miniaturization presents a major challenge to the technical 
community. Nowadays it is feasible to consider WG modes in 
fine and uniform devices having physical dimensions at micro- 
and nanometer scales. For example, Zhang et al.7 built an 
InGaAsP micro-laser with a ring cavity of 4.5µm in diameter 

and a curing waveguide of 0.4µm in width. Krioukov et al.8 
considered integrated microcavities for enhanced evanescent-
wave spectroscopy.  The waveguide and semiconductor 
nanofabrication techniques enable mass production of 
compactly integrated and robust lab-on-a-chip WG mode 
devices. Most such devices have planar structures. 

Analytical tools are in great demand for guiding the design 
of Opto-MEMS/NEMS devices. Optical WG modes are 
rigorously governed by Maxwell electromagnetic (EM) theory. 
The geometric optics method9 can only be used for roughly 
estimating some simple WG modes.  Numerical approaches10 
are approximate although they take advantages in complex 
systems and can be utilized to investigate such as the gap 
effects.11 Analytical methods give exact solutions to a physical 
problem.   

The objective of this report is to analyze WG modes of 
planar resonators.  In EM analyses, the scattering of a plane 
wave is usually adopted and the wave equations are solved.12  
In this manuscript the electric wave equation is solved via the 
method of separation of variables. Appropriate boundary 
conditions are set up to close the physical solutions. The 
formulations are derived. The WG mode electric-field 
distributions as well as the resonant frequencies of two 
exemplary cavities are obtained and presented 

NOMENCLATURE 
a    = radius 
E    = electric field 
l    = radial mode number 
m  = polar mode number 
n   = azimuthal mode number; refractive index 
r    = radial direction 
k    = wave number 
λ = wavelength 
θ    = azimuthal angle 
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ANALYSES 
Figure 1 schematically shows a WG mode in a sphere.  

Light is trapped in circular orbits along the equatorial plane 
within the surface of the structure and can be thought to 
propagate along zigzag paths.  WG modes in the spherical 
coordinates are characterized by three mode numbers: l ,  
and , which are the radial, azimuthal and polar mode 
numbers, respectively.  The mode number  is equal to the 
number of field maxima in the radial direction (

n
m

l
r ) of the 

sphere.  The value of  indicates the number of field maxima 
in the azimuthal direction (

n2
θ ) in an equatorial plane, and the 

value of ( ) is equal to the number of field maxima in 
the polar direction (

1+− mn
ϕ ) around the equator. 

 
Figure 1. Schematic of a WG mode in a sphere. 

In planar structures, only  l  and  modes are needed for 
describing WG modes. Consider a harmonic in-plane TM 
wave, the E-field has only the z-component, ; and the scalar 
Helmholtz’s equation in a disk coordinate is
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where the wave number µεω=k . ε  and µ  are the 
permittivity and permeability, respectively.   

To solve the above equation we assume a separation in the 
form 

)()( θΘ= rREz     (2) 
and introduce a separation variable n. Then Eq. (1) is separated 
into two ordinary differential equations: 

02 =Θ+Θ ′′ n     (3a) 
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By choosing a proper reference line from which θ  is 
measured, the solutions of  can be formulized as Θ

)cos()( θθ nAnn =Θ ,    (4) ...3,2,1=n
Thus, the eigenvalues of the separation variable n are 

actually the feasible azimuthal modes. 

There are two solutions for Eq. (3b). For EM waves inside 
the resonator, i.e., if ar < , where  is the physical radius of 
the disk resonator, we have 

a

)()( 1rkJCrR nni =     (5) 
For EM waves outside the resonator, i.e., if ar > , the 

solution for Eq. (3b) becomes the real part of 

)()( 2rkHDrR nno =     (6) 
where the Hankel function is defined as 

.  and  denote the wave numbers 
in and out the resonator, respectively. 

)()()( xiYxJxH nnn ±= 1k 2k

By applying the continuity boundary condition 
)()( aRaR oi =     (7) 

we can correlate  with  and get a solution: nD nC
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The general eigenfunctions of , which can be 

interpreted as the possible spatial WG modes, are then the 
products of the solutions for  and  as follows: 
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with n = 1, 2, 3 … 
Consider the continuity condition of the first derivative of 

with respect to zE r  at ar =  
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It follows that 
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      (12) 
Where  and  are the refractive indices of the materials in 
and out the resonator, respectively. This boundary condition is 
then utilized for finding the possible resonance wavelengths for 
a WG mode n via iteration and bisection methods.  

1n 2n

Now we need one more condition to determine where the 
radial component of the E-field peaks and valleys for the 
obtained resonance wavelengths. Since WG modes are 
confined inside a resonator, we only need to calculate 

0=
∂
∂

r
Ez  for ar <     (13) 

From 0)( 1 =′ rkJ n  , we obtain the equation below for 
finding the radial positions of peaks and valleys: 

0)()( 1111 =−− rknJrkrJk nn    (14) 
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The number of peaks and valleys accounts for the l mode 
number, and the wavelength lnλ is the resonance wavelength 
for a WG mode (l, n). 

 
Table 1. Resonance wavelengths of a 2µm-diameter resonator at 

various WG modes. 

Mode n Resonance λ (nm) FSR (nm) 
1 5629.1504  
  2053.7598 

2 3575.3906  
  926.9531 

3 2648.4375  
  548.999 

4 2099.4385  
  353.2959 

5 1746.1426  
  248.6634 

6 1497.4792  
  184.5153 

7 1312.9639  
  142.4164 

8 1170.5475  
  113.2828 

9 1057.2647  
  92.3737 

10 964.891  
  76.8642 

11 888.0268  
  65.032 

12 822.9948  
  55.7975 

13 767.1973  
  48.4423 

14 718.755  
  42.4827 

15 676.2723  
  37.5815 

16 638.6908  
  33.4985 

17 605.1923  
  30.0585 

18 575.1338  
  27.1316 

19 548.0022  
  24.6191 

20 523.3831  
  22.4456 

21 500.9375  
  20.5518 

22 480.3857  
 
 

   n = 2 
 

   n = 4 
 

    n = 8 
 

  n = 16 
 

Figure 2.  E-field distributions for different azimuthal mode 
numbers with l = 1. 
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RESULTS AND DISCUSSION 
Let us consider two exemplary disk resonators made of 

silicon nitride and exposed to the ambient air. The refractive 
index is 2.01 for Si3N4 and 1.0 for air.  Table 1 lists the 
resonance wavelengths of a 2µm-diameter resonator for various 
azimuthal modes at the same radial mode l =1. The resonance 
wavelength decreases with the increase of the azimuthal mode 
number.  The free spectrum range (FSR) also decreases with 
increasing mode number. Thus, the resonance spectrum of a 
resonator is not uniformly distributed. 

Figure 2 shows the E-field distributions for four different 
azimuthal mode numbers at a radial mode l =1. The dark circles 
in the maps mark the physical boundary of the resonator (a = 
1µm). The larger is the azimuthal mode number, the narrower 
is the confined mode region.  

Further inspection of the radial profile of normalized  
as shown in Fig. 3, it is confirmed that with increasing 
azimuthal mode number, more energy will be confined in a 
very thin layer inside the resonator surface and less energy will 
leak out from the resonator.  This indicates that the quality 
factor Q increases with increasing WG mode order 
theoretically.  In order to realize high-Q resonances, short 
wavelength can be employed for excitation. 
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Figure 3. Radial profile of normalized Ez at various modes. 

Figure 4 shows the E-field distributions corresponding to 
(a) 2µm-diameter resonator with  at resonance 
wavelength of 822.9948nm and (b) 10µm-diameter resonator 
with  at resonance wavelength of 801.7479nm.  
Obviously, the 10µm-diameter resonator has better 
confinement and thus, better mode quality than the small one.  

12=n

72=n

 

  (a) 
 

  (b) 
 
Figure 4.  E-field distributions of (a) a 2µm-diameter resonator at 
(l = 1, n = 12) and (b) a 10µm-diameter resonator at (l = 1, n = 72). 

 
Figures 5 and 6 show the  radial profiles and 

distributions for a 2µm-diameter resonator working, 
respectively, at WG mode of (l = 1, n = 12) with λ

zE

ln = 
822.9948nm and at WG mode of (l = 2, n = 12) with λln = 
656.1893nm.  It is observed that there is only one peak in the 

 radial profile for the mode of l = 1, but one peak and one 
valley for the mode of l = 2. 

zE

WG mode resonators can be of any circular geometry 
(spheres, disks, and rings).  Phase-matched optical waveguides 
or optical fiber cores are used to couple light into the cavity 
and/or to collect signals. The rapid advances in modern 
nanofabrication techniques have made it feasible to consider 
WG mode microcavity resonances in fine and uniform 
MEMS/NEMS devices having physical dimensions at the 
micro/nanometer levels.  Such devices are manufacturable, and 
of high uniformity and easy calibration. They usually have a 
planar structure. Thus, the present study is of importance for 
intrinsic resonance analysis in MEMS resonators. 

CONCLUSION 
An analytical method is developed for analyzing 

whispering-gallery modes in planar structures. The method is 
based on the solution of the wave equation via the method of 
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separation of variables. Feasible and appropriate boundary 
conditions are established for closing the solutions. Analytical 
formulations are derived. The iteration and bisection methods 
are utilized for identifying the resonance 
frequencies/wavelengths. Using this new model, we can easily 
and precisely find the resonance wavelengths and the E-field 
peak and valley locations in the radial direction. The calculated 
results based on the derived formulations are presented for a 
variety of resonance modes. It is found that the resonance 
spectrum of a resonator is not uniformly distributed. With 
increasing azimuthal mode number, more energy will be 
confined in a very thin layer inside the resonator surface and 
this will increase the Q.  For two resonators working at close 
resonance frequencies, the large resonator has better mode 
quality than the small one because the large one has a high 
resonance mode order. 
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(a) 
 

  (b) 
 

Figure 5. (a)  profile in the radial direction and (b) E-field 
distributions for a 2µm-diameter resonator at l = 1, n = 12, and λ

zE
n 

= 822.9948nm. 
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      (b) 
 

Figure 6.  (a)  profile in the radial direction and (b) E-field 
di  2
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