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In this report, we investigate the influences of the small gap in whispering-gallery modes 
on energy coupling, resonance quality and frequency. Photon tunneling between an optical 
resonator and its light-delivery coupler depends strongly on the gap dimension which can 
vary from zero to size of an optical wavelength involved.  An optimal gap dimension is found 
to exist for maximum energy coupling. The Q factor increases exponentially with increasing 
gap and saturates as the gap approaches the optical wavelength. The resonance frequency 
shifts with decreasing gap to a certain value. An optimum gap for sensing applications can 
be defined at the half maximum energy coupling where both the Q factor and coupling 
efficiency are high and the resonance frequency is little affected by the gap variation.  

Nomenclature 
c    = speed of light 
d   = diameter of microcavity 
e    = direction unit vector 
E    = electric field vector 
g   = gap distance 
H    = magnetic field vector 
J    = electric current density 
k    = absorption index 
m   = complex index of refraction 
n    = real part of the refractive index  
n    = unit vector in normal direction 
Q   = cavity quality factor 
ε    = permittivity 
εc   = complex permittivity 
λ    = wavelength 
µ    = permeability  
ρ    = electric charge density  
σ    = electrical conductivity 
ω   = angular frequency  
∆ω   = resonance bandwidth 
 

I. Introduction 
ptical microcavities1 have recently received increasing attention due to their high potential for the realization of 
cavity quantum electrodynamics,2 microlasers,3 narrow filters,4 optical switching,5 miniature biosensors,6 and 

high resolution spectroscopy,7 to name but a few.  Whispering-gallery mode resonances occur when light travels in a 
dielectric medium of circular geometry. After repeated total internal reflections (TIR) at the curvilinear boundary the 
electromagnetic wave returns to its starting point in phase, giving rise to resonance.  If the resonating cavity is in the 
micrometer level, one obtains a very small mode volume and high finesse. 
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Despite of very small volume, WGM optical microcavities can store high energy due to the minimum reflection 
losses inside the cavity.  The resonant quality is described by the cavity Q factor that is defined as π2 times the ratio 
of the stored energy in the microcavity to its energy lost per optical period.  Q > 109 has been observed at red and 
near-infrared wavelengths in fused-silica sub-millimeter particles.8,9 If used as miniature sensors optical 
microcavities could achieve extremely high sensitivity for detection of molecules such as proteins6 and peptides.10  

Finesse is defined as a ratio of free-spectral range (FSR) to full-width at half maximum (FWHM) of a resonant 
band. FSR represents the interval between two adjacent resonant frequencies and is inversely proportional to the 
cavity size. Microscale cavities ensure that the resonant frequencies are more sparsely distributed throughout the 
cavity size-dependent resonant optical spectrum than they are in corresponding mesoscale cavities.  However, it 
should be aware of that the effects of diffraction grow as the cavity shrinks; and when the periphery of the cavity 
approaches the wavelength of light passing through the interior, resonances are lost altogether. 

Different from Mie resonance in microdroplets of aerosols which is observable by means of elastic and inelastic 
scattering of free-space beams, high-Q WGMs are not accessible by free-space beams; and therefore, require 
employment of near-field couplers.  Numerous coupling devices, such as high-index prisms with frustrated total 
internal reflection,11 side-polished fiber couplers,12 tapered optical fibres tapers,13 and waveguides,14 have been 
considered.  The principle of all these devices is based on providing efficient energy transfer to the resonant circular 
TIR guided wave in the resonator through the evanescent field of a guided wave or a TIR spot in the coupler.  It is 
evident a priori that efficient coupling can be expected on fulfillment of two main conditions: phase synchronism 
and significant overlap of the two evanescent fields in the gap between the microcavity and the coupler.  Thus, the 
gap is a critical parameter that affects the energy transfer and coupling efficiency.   

It is tough to control the gap for a lab-built optical microcavity. Recent advances in the technology of 
nanofabrication offer the possibility of manufacturing new optical devices with unprecedented control.  It is now 
feasible to consider optical microcavities, light couplers, and coupling gaps having physical dimensions in nano- and 
micro-meter levels. Integration of photonic devices can be easily achieved through fabrication methods like optical 
lithography, chemical vapor deposition, and chemical or plasma etching. Dimensions of 100-200 nm are routinely 
achieved in the manufacturing of integrated circuits. Nanofabrication techniques allow the realization of 
semiconductor microcavity ring and disk resonators with evanescent wave coupling to micron- or submicron-width 
waveguides across nanoscale air gaps. With high-quality etching, the scattering loss can be minimized to achieve 
simultaneously a high Q and high finesse. For example, Guo et al.15 recently nanofabricated integrated microcavities 
and waveguides using 248nm optical lithography and conventional silicon IC processing.   

Radiative energy transfer, which involves photon transport and Maxwell electromagnetic interaction with matter, 
is an important heat transfer mechanism. Maxwell electromagnetism16,17 is commonly used to describe radiation 
phenomena in micro/nanometer scale. Conventional thermal radiation transfer in meso/macroscale is well 
summarized in the textbooks.18,19 Some specific criteria have been established to delineate the micro/nanoscale and 
the meso/macroscale radiation regimes.20,21 The increasing demand for smaller structures and devices opens up new 
opportunities and challenges in micro/nanoscale heat transfer.22-25  

In this study, we will characterize the micro/nanoscale energy transfer and optical resonance in optical 
microcavity devices. Each device consists of a resonant microcavity and a light-delivery waveguide coupled by a 
nano- to sub-microscale air gap.  Maxwell’s equations governing the energy transfer will be solved via the finite 
element method. Simulation results will be utilized to discuss the characteristics of energy coupling and storage 
capacity, and resonance quality and frequency in such kinds of devices.  

II. Mathematical Description 
The time-dependent Maxwell’s equations are16  
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For the electric field, since 0=ρ  and EJ σ= , we can derive the equation for E as follows:  

02

2
2 =

∂
∂

−
∂
∂

−∇
t
E

t
EE µεµσ . 

For time-harmonic waves, tierEtrE ω)('),( = ; Eq. (2) is then simplified to a Helmholtz equation: 
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where we have introduced the complex permittivity19 )/(0 ωσεεεε icrc −=⋅= , and nkiknmcr 2222 −−==ε . We 
can get a similar Helmholtz equation for the magnetic field. 

Under optical resonances the EM field inside the microcavity is typically consisted of equatorial brilliant rings. 
And the rings are located on the same plane as the waveguide.  Further, the considered structure of nanofabricated 
microcavities is planar. So it is feasible to use a two-dimensional theoretical model.  In the present calculations we 
consider the In-plane TE waves, where the electric field has only a z-component; and it propagates in the x-y plane.  
Thus, the fields can be written as: 

( ) ( ) ti
zz eeyxEtyxE ω,,, = , ( ) ( ) ( )[ ] ti

yyxx eeyxHeyxHtyxH ω,,,, += . 
At the interface and physical boundaries, the natural continuity condition is used. For the boundaries of the 

calculation domain, the low-reflecting boundary condition is adopted. The low-reflecting condition means that only 
a small part of the wave is reflected, and that the wave propagates through the boundary almost as if it were not 
present.  This condition can be formulized as  

0=+×⋅ zz EHne εµ . 
The light source term E0z, which propagates inwards through the entry of the waveguide, was treated as an 

electrically low-reflecting boundary expressed by  
zzz EEHne 02 εεµ =+×⋅ . 

 
The quality factor Q is expressed by:  

ωω ∆= /0Q , 
where ω0 is the central frequency of a resonant band, and ∆ω is the resonance bandwidth.  

Versatile and accurate numerical approaches including the finite-difference time-domain method26 and the finite 
element method27 (FEM) can be employed for solving the above mathematical models. The FEM is more flexible in 
terms of the treatment of irregular configurations.  Thus, the In-plane TE waves application mode of the commercial 
FEMLAB package (version 3.0) was employed for the finite element analysis in the current calculations. The 
description of the numerical method is available in a recent publication10 of us. 

III. Results and Discussion 
We consider an optical microresonance systems consisting of a 

microdisk (as the resonator) and a coupling waveguide as shown in 
Fig. 1.  The diameter of the microcavity is 2µm, and the width of the 
waveguide is 0.5µm. The microdisk and waveguide are made of the 
same material (silicon nitride) and are assumed to have a constant 
refractive index of 2.01. The resonance mode is around 823 nm 
wavelength.  The surrounding medium is air.  The gap is defined as 
the narrowest distance between a microdisk and its coupled 
waveguide. The gap varies from zero (in close contact) to one 
wavelength of incident radiation.  

The simulation domain is meshed with many triangle elements 
generated automatically by the FEMLAB software in which a mesh 
gradient approach is adopted to deal with abrupt changes in sensitive 
areas like the vicinity around the periphery of the microdisk and the 
gap region.  However, such an automatic approach was not very 
satisfactory because there is no constant gradient change in the 
resonant EM field existed inside the periphery of the cavity.  To meet 
with this requirement, we divide the microdisk into two regions and 
use hierarchical meshing to scale the cavity down to two different 
spatial levels:  a ring where resonant EM field exists and an inner disk 
where the EM field is very weak.  The mesh in the ring is then locally 
refined.  After such a treatment, the simulation was satisfactory.  The 
total finite elements used were about 105. The computation was 
conducted in a PC. The CPU time consumption was basically not a 

(3) 

(7) 

(4) 

(5) 

(6) 

Figure 1. Schematic sketch of an optical 
microcavity system. 
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concern for an individual simulation run because each run only took several minutes. In order to get a resonance 
spectrum, however, hundreds of simulation runs are needed.  In particular, the resonance band is extremely fine for 
larger gaps due to the high-Q characteristic of WGM microresonances.  It takes dozens of runs to find a resonance 
band for each gap value in the WGM systems.  The whole simulation can be very time-consuming.   

Figure 2 shows the electric fields of the microcavity system for three different gap values.  It is seen that the E-
field in the cavity with 150nm gap is much stronger than those with 50nm and 400nm gap values.  Since the energy 
density is proportional to the square of the amplitude of the time-harmonic E-field, the energy density in the cavity 
with 150nm gap is very concentrated. Thus, the gap dimension will absolutely affect the energy coupling from the 
waveguide to the microcavity.  When the gap is very small (such as g = 50 nm), the E-field in the waveguide is 
distorted. While in the case of g = 400nm, the presence of the microcavity does not affect the E-field pattern in the 
waveguide. 
 

   
(a) g = 50nm (b) g = 150nm (c) g =  400nm 

 Figure 2. Electric fields of the system with three different gap values. 
 
In Fig. 3, the stored energy inside the 

cavity is used as a measure to demonstrate 
the gap effect on energy coupling. The 
larger the stored energy, the stronger the 
energy transfer from the waveguide to the 
cavity; and consequently the more efficient 
in energy coupling. The simulated results 
are represented by the discrete symbols in 
Fig. 3. The results are fitted into Lorentz 
fittings.  The results are normalized by the 
maximum stored energy at the optimal gap 
dimension. The gap varies from zero to 
800nm with a step change of 50nm.  It is 
estimated from the fitted curves that the 
energy storage is the greatest when the gap 
is about 180nm for the resonance mode at 
823nm wavelength. Such an optimal gap 
value represents the most efficient energy 
coupling at the microcavity resonance 
mode.  Thus, an optimal gap dimension 
does exist. This is of practical importance 
for microcavity device design. In 

 
Figure 3. The stored energy in the microcavity vs. the gap 
variation. 
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particular, signal intensity is very 
important in sensor applications. One 
would like to design a gap with more 
efficient energy coupling. 

The gap effect on resonance quality 
is shown in Fig. 4, where both the 
FWHM and Q factor are considered. The 
discrete symbols represent the simulated 
results and the variations can be fitted 
into Boltzmann fittings. We found that 
with the increasing gap from zero to 
900nm, the FWHM (unit: GHz) narrows 
and the Q factor increases. The fitted 
curves show that the Q factor increases 
exponentially at the beginning before the 
gap reaches to the optimal gap for 
coupling; after passing the optimal gap, 
the increase of the Q factor slows down 
gradually and finally becomes quite 
flattened. A maximum Q factor is 
reached at when the gap dimension 
reaches to the wavelength of the 
resonance mode. However, the resonant 
energy in the resonator is extremely 
weak at this gap distance as shown in 
Fig. 3. The limit Q value is over 103 for  
the 2µm-in-diameter microcavity. The 
FWHM is the bandwidth of a resonance 
mode.  It is inversely proportional to the Q 
factor. 

It is easy to understand the reduction of 
coupling efficiency at gap dimensions 
larger than the optimal value, because it is 
well-known that the evanescent field 
strength from a surface decays 
exponentially as a function of the distance 
to the surface. The longer the distance, the 
weaker is the strength.  The evanescent 
field is almost negligible at a distance over 
one optical wavelength involved. How can 
we understand the reduction of the 
coupling efficiency for gaps smaller than 
the optimal gap? From the viewpoint of the 
evanescent strength, a smaller gap has a 
stronger strength and closer overlapping of 
the two evanescent fields from the 
resonator and the waveguide, respectively. 
A smaller gap affords more opportunities 
to photon tunneling. Indeed because of the enhanced photon tunneling, photons confined in the resonator tunnel 
back to the waveguide. As a result, a narrower gap reduces the coupling efficiency as a system. Therefore, an 
optimal gap for energy coupling exists as a trade-off between bidirectional coupling efficiencies. 

Figure 5 shows the resonance wavelength shift against the gap variation. The shift is defined as 0λλ −g , where 

0λ is the resonance central wavelength under in-contact condition (zero gap) and gλ is the resonance central 
wavelength corresponding to a gap. It is seen that with increasing gap the resonance wavelength shifts upward.  The 
shift could be very appreciable (maximum is around 1.85 nm).  However, the results indicate that the frequency 

Figure 4. Gap effects on the Full Width at Half Maximum 
(FWHM) of the resonance band and the Q factor. 

Figure 5. Gap variation vs. resonance frequency shift. 
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shifts reach to a stable and constant value after the gap distance increases to over 250nm.  This implies that the gap 
dimension after a threshold value will not influence the resonance frequency.  This trait is of great significance for 
applications using frequency shift characteristic such as in biosensors.6,10  

Simultaneously considering Figs. 3 to 5, we suggest a trade-off among the coupling efficiency, the Q factor, and 
the stable resonance frequency requirement. For many sensor-based applications, it is feasible to sacrifice somewhat 
of the Q factor to guarantee the measurement of sensitive signals. A gap dimension after the optimal gap and at half 
of the maximum coupling efficiency can be chosen as the optimum gap in which both the Q factor and coupling 
efficiency are high, and the resonance frequency is not affected by a small variation in the gap dimension. This 
optimum gap concept is shown in Fig. 6 and this can be used as the guidance in the design of optical microcavity 
devices.   

IV. Conclusion 
Energy coupling and whispering-gallery 
mode optical resonances were simulated 
using the finite element solution of 
Maxwell’s equations. It was found that 
the optical microcavities have a very 
strong energy storing property under 
optical resonance. The majority energy 
stores in a thin ring close to the periphery 
of the microcavity. An optimal gap 
dimension was found for maximum 
energy coupling from the waveguide to 
the resonant cavity.  With increasing gap, 
the Q factor increases; while the FWHM 
decreases. The Q factor increases 
exponentially at the beginning before the 
gap reaches to the optimal gap for 
coupling; after passing the optimal gap, 
the increase of the Q factor slows down; 
and when the gap approaches to the 
optical wavelength the Q factor reaches 
to a limit maximum value. For very small 
gap, the resonance central frequency is 
strongly affected by the gap dimension 
variation. With increasing gap to over 
250nm, the gap variation does not 
obviously affect the resonance frequency. An optimum gap can then be suggested at half maximum energy coupling 
where both the Q factor and coupling efficiency are high and the resonance frequency is stable.  
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