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ABSTRACT 
 
Photon tunneling between an optical resonator and a light-delivery coupler is strongly dependent on the gap dimension 
which can vary from zero to size of an optical wavelength involved.  In this systematic report, we investigate the gap 
effects of whispering-gallery modes in two modeling systems: a waveguide-coupling resonator of 2µm and 10µm in 
diameter, respectively.  Maxwell’s equations which govern the EM wave propagation and photon tunneling in the 
microsystems are solved using the finite element method. The simulation accuracy and sensitivity is examined. It is 
found that when the maximum element size in the computationally sensitive regions is below 1/8 of the wavelength 
involved, the calculations are accurate.  An optimal gap exists for maximum energy coupling and is a strong function of 
the wavelength of the resonant mode.  The Q factor increases exponentially with increasing gap and saturates as the gap 
approaches the optical wavelength. An optimum gap can be defined at the half maximum energy coupling where both 
the Q factor and coupling efficiency are high. We also calculate the effects of gap width on the resonance shift. We find 
that the resonance wavelength is increased (decreased) with decreasing gap width for the 10µm (2µm) diameter 
resonator with narrow gap widths.  
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1.  INTRODUCTION 
 

Optical whispering-gallery modes (WGMs) describe resonant electromagnetic modes of photons that circulate in well-
defined trajectories inside a dielectric medium of circular geometry.  WGMs occur when EM waves confined by the 
total internal reflection at the curved boundary of a cavity can close on themselves.  Nussenzveig1 found that if a 
spherical particle (as a resonator) is much larger than the wavelength of light involved, WGMs can be represented as 
geometric orbits. The resonance situation is then akin to a violin string, which supports vibrational modes only at those 
frequencies that provide for an integral number of half wavelengths along its length2.  Hence, WGMs are morphology-
dependent resonances3.  The resonant wavelengths and frequencies are estimated approximately by: 
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where r and n are the radius and refractive index of the resonator, respectively; m is an integer and represents the 
resonance mode; mλ and mf are the resonant wavelength and frequency at mode m, respectively.  If a dielectric medium 
would have a dimension of the order of the wavelength, r ~ λm, and have negligible optical losses, a microcavity made 
of this medium could have a very small mode volume and high finesse.  
 
An ideal cavity would confine light indefinitely (i.e., without loss) and would have resonant frequencies at precise 
values.  In reality optical losses exist due to material absorption or scattering as a result of surface roughness or material 
inhomogeneity4.  Ultimately the photon lifetime is limited by diffraction2, which causes photon trajectories to be less 
certain, allowing the energy eventually to “leak” out.  The resonant quality is described by the cavity Q factor that is 
defined as π2 times the ratio of the stored energy in the microcavity to its energy lost per optical period. Thus, the Q 
factor is proportional to the photon confinement time. In general, a resonant band has a Lorentzian lineshape; and the Q 
factor can be calculated by3 ωω ∆= 0Q , where 0ω  is the resonance central frequency and ω∆  is the full-width at half 
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maximum (FWHM) of its Lorentzian lineshape. Q > 109 has been observed at red and near-infrared wavelengths in 
fused-silica microparticles5, 6.  
 
Another important parameter describing optical microcavities is finesse, which is defined as a ratio of the free-spectral 
range (FSR) to FWHM. The term FSR represents the interval between two adjacent resonant frequencies.  With a cavity 
radius at 15 µm, the FSR can be as wide as 2 THz (over 10 nm)7.  From Eq. (1), the FSR is inversely proportional to the 
cavity size. Microscale cavities ensure that resonant frequencies are more sparsely distributed throughout the cavity 
size-dependent resonant optical spectrum than they are in corresponding “mesoscale” and “macroscale” cavities.  
However, it should be aware of that the effects of diffraction grow as the cavity shrinks; and when the periphery of the 
cavity approaches the wavelength of light passing through the interior, resonances are lost altogether. 
 
Different from Mie resonances in microdroplets of aerosols which are observable by means of elastic and inelastic 
scattering of free-space beams, high-Q WGMs are not accessible by free-space beams8; and therefore, require 
employment of near-field couplers.  Numerous coupling devices, such as high-index prisms with frustrated total internal 
reflection8, side-polished fiber couplers9, tapered optical fibers tapers10, and waveguides11-14, have been developed by 
several research groups.  The principle of all these devices is based on providing efficient energy transfer to the resonant 
circular TIR guided wave in the resonator through the evanescent field of a guided wave or a TIR spot in the coupler.  It 
is evident a priori that efficient coupling can be expected on fulfillment of two main conditions: phase synchronism and 
significant overlap of the two evanescent fields in the gap between the microcavity and the coupler.  Thus, the gap is a 
critical parameter that affects the coupling efficiency.   
 
 

 
 

Figure 1. SEM images of a nanofabricated WGM microdevice consisted of a microdisk and a coupled waveguide. 
 
It is tough to control the gap for lab-built WGM microresonant systems in which most are microsphere-optical fiber 
coupling systems. Recent advances in the technology of nanofabrication offer the possibility of manufacturing new 
optical devices with unprecedented control.  It is now feasible to consider WGM microcavities, light couplers, and 
coupling gaps having physical dimensions from nanoscale to the order of optical wavelengths.  Integration of photonic 
devices can be easily achieved through fabrication methods like optical lithography, chemical vapor deposition, and 
chemical or plasma etching.  Dimensions of 100-200 nm are routinely achieved in the manufacturing of integrated 
circuits (IC). Nanofabrication techniques allow the realization of semiconductor microcavity ring and disk resonators 
with evanescent wave coupling to micron- or submicron-width waveguides across nanoscale air gaps. With high-quality 
etching, the scattering loss can be minimized to achieve simultaneously a high Q and high finesse. For example, the 
present authors11 recently nanofabricated integrated microcavities and waveguides (see Fig. 1) using 248nm optical 
lithography and conventional silicon IC processing. Zhang et al.12 realized an InGaAsP photonic-wire microcavity ring 
laser consisting of a ring cavity of 4.5µm-in-diameter and a curing waveguide of 0.4-µm in width.  Laine et al.13 
considered microsphere and waveguide coupler in their acceleration sensor design.  Klunder et al.14 designed laterally 
and vertically waveguide-coupled cylindrical micro-resonators in Si3N4 on SiO2 technology using conventional optical 
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lithography.  Krioukov et al.15 examined integrated optical microcavity sensors.  Additionally, these resonators can be 
integrated with low-threshold photonic-wire microcavity lasers16 to achieve compactly integrated and robust lab-on-a-
chip system. 
 
With size flexibility, mechanical stability, adaptability to integrated circuits, very high quality factor, and very small 
mode volume, WGM microresonances have become subject of numerous studies in basic research and emerging 
applications.  In a recent review17 Vahala summarized four applications of optical microcavities: strong-coupling cavity 
quantum electrodynamics (QED), enhancement and suppression of spontaneous emission, novel sources, and dynamics 
filters in optical communications. Thus, the vast literature in these four fields is not cited here.  In the past decade 
extensive texts and treaties have been published on microcavity semiconductor lasers12, 16, 18. Other topics include 
microsphere photonics2, soliton effects19, chaos20, narrow filters21, optical switch22, high-resolution spectroscopy15, 23, 
optical memories24, and microsensors13, 25-27, etc.  
  
In a recent parametric study28, we found that the gap separating the waveguide and the resonator had little effect on the 
FSR. However, the gap did strongly influence the cavity Q factor and the FWHM of the resonant modes.  In this 
treatise, we will investigate the gap effects on the WGM microresonances for two planar microdisk and waveguide 
coupling systems.  The remainder of this paper is organized as follows. Section 2 deals with the theoretical formulation 
and numerical methodology. Section 3 describes the simulation models, and examines the simulation accuracy and 
sensitivity. Section 4 discusses the results of the gap effects.  We present our conclusions in the last section. 
 

2. METHODOLOGY 
 
We used the Helmholtz equations derived from Maxwell’s equations and the finite element method to simulate WGM 
microresonances in planar microdisk-waveguide coupling systems. Under WGM resonances the EM field inside the 
microdisk is typically an equatorial brilliant ring (for the first-order resonance). And the ring is located on the same 
plane as the waveguide.  Further, the structure of the microdisk is planar. So it is feasible to use a two-dimensional (2-
D) theoretical model.  The time-dependent Maxwell’s equations are  
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where E  and H  are the electric and magnetic field vectors, respectively; ε  and µ  are the permittivity and permeability 
of the medium; ρ  is the electric charge density; and J  is the electric current density. 
 
For the electric field, since 0=ρ  and EJ σ= , we can derive the equation for E  as follows:  
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where σ is the electrical conductivity. For time-harmonic waves, 

tierEtrE ω)('),( = . 
Equation (3) is then simplified to a Helmholtz equation: 

01 22 =+∇ EE cεω
µ

 

where we have introduced the complex permittivity )/(0 ωσεεεε icrc −=⋅=  and  λπω /2 c= ; c  is the speed of light 
in the medium and λ  is the light wavelength. Here, the complex index of refraction, iknm −= , is conveniently 
introduced for the treatment of wave propagation; n is the real part of the refractive index and represents a spatial phase 
change of the electromagnetic wave; k  is the absorption index and stands for a spatial damping on the electromagnetic 
wave. The relationship between crε  and m  is expressed by 

nkiknmcr 2222 −−==ε . 
Similarly we can get a Helmholtz equation for the magnetic field: 
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01 22 =+∇ HH cεω
µ

 

 
In the present calculations we consider the In-plane TE waves, where the electric field has only a z-component; and it 
propagates in the x-y plane.  Thus, the fields can be written as: 
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At the interface and physical boundaries, the natural continuity condition is used for the tangential component of the 
magnetic field, i.e.,  

0=×Hn . 
 
For the boundaries of the calculation domain, the low-reflecting boundary condition is adopted. The low-reflecting 
condition means that only a small part of the wave is reflected, and that the wave propagates through the boundary 
almost as if it were not present.  This condition can be formulized as  

0=+×⋅ zz EHne εµ . 
 
The light source term E0z, which propagates inwards through the entry of the waveguide, was treated as an electrically 
low-reflecting boundary expressed by  

zzz EEHne 02 εεµ =+×⋅ . 
 
The quality factor Q is expressed by:  

τπωωω 00 2/ =∆=Q  
where ω0 is the central frequency of a resonant band, ∆ω is the resonance linewidth, and τ is the photon lifetime.  
 
The In-plane TE waves application mode of the commercial FEMLAB package (version 3.0) was employed for the 
finite element analysis. In order to solve the problem using the FEM, we need to convert the foregoing strong 
formulation to a weak form. By applying the Galerkin method to Eqs. (5) and (7), the integral form of the equations is 
obtained as: 

0)221( =Ω∫Ω Φ+Φ∇⋅ dcW εω
µ

 

where Φ  is a set of trial function ( approximation of zE ) that satisfies the boundary conditions, W  is a weighting or 
test function, and Ω  is the computational domain. Integrating the first term of Eq. (13) by parts results in  
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where Γ  is the boundary of the domain. Now we use the basic shape function N(x, y) to expand Φ  and W : 
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Here n is the number of nodes and subscript i represents the node order. The numerical discretization is completed with 
the enforcement of Eq. (14) for all finite elements. Substituting Eq. (15) into Eq. (14) results in the following matrix 
formation: 
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where N is a row vector, {N1, N2, …}, and NT is a transpose vector of N.  The line integral in Eq. (17) needs to be 
evaluated only over elements that have a side in common with the boundaries of the problem. Normally this integral is 
simply set to zero, which gives the so-called natural boundary condition. The basis of polynomial functions N(x, y) 
gives an approximation of the solution into the element. 
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3. SIMULATION MODELS AND ACCURACY 

 
As above mentioned, two microdisk and waveguide coupling systems are considered in this study. One of the systems is 
referred as the 10µm-diameter microdisk system, in which a microdisk of 10µm in diameter is coupled with a 
waveguide of 2µm in width. Another one is named as the 2µm-diameter microdisk system, in which a microdisk of 
2µm in diameter is coupled with a waveguide of 0.5µm in width.  The waveguides are straight.  All the microdisks and 
waveguides are made of the same material (silicon nitride) and are assumed to have a constant refractive index of 2.01 
against the excitation wavelengths (600 – 850nm) and lossless.  The surrounding medium in the systems is air.  The gap 
is defined as the narrowest distance between the microdisk and the waveguide in a system.  The gap varies from zero (in 
close contact) to 1000nm.  
 
Each system is modeled as a rectangular simulation domain. The dimensions of the simulation domains are 4µm×5.5µm 
and 14µm×16µm for the 2µm- and 10µm-diameter microdisk systems, respectively.  The domains were meshed by 
many triangle elements generated automatically by the FEMLAB software in which a mesh gradient approach was 
adopted to deal with abrupt changes in sensitive areas like the vicinity around the periphery of the microdisk and the 
gap region. However, such an approach was not very satisfactory because there is no constant gradient change in the 
resonant EM field existed inward from the periphery of the cavity.  To meet with this requirement, we divided the 
microdisk into two regions and used hierarchical meshing to scale the cavity down to two different spatial levels:  a ring 
where resonant EM field exists and an inner disk.  The mesh in the ring is then locally refined. Exemplary meshes for 
the two simulation domains are shown in Fig. 2.  Since the 2µm-diameter microdisk has a large curvature, energy 
“leakage” from the cavity surface due to scattering could be appreciable.  Therefore, we considered an additional ring 
surrounding the 2µm-diameter microdisk. The mesh in this additional ring is also refined.  As shown in Fig. 2, the 
meshes inside the rings, the gap regions and the small waveguides are finer than other regions.   
 
 

  
(a) the 2µm-diameter microdisk system (b) the 10µm-diameter microdisk system 

 
Figure 2. The simulation domains and meshes. 

 
Let us examine the simulation accuracy and sensitivity using the 2µm-diameter microdisk system as an example. The 
considered gap is fixed at 100nm. The concept of the maximum element size maxd  is introduced for the sensitive 
simulation sub-domains including the resonant EM ring, the photon tunneling gap, and the waveguide because of the 
local refining of meshes. It means that the size of any meshed element in these specific sub-domains should not be 

MICRODISK 

WAVEGUIDE 
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larger than this value. In general, the number of elements generated depends on the maxd  value used. Smaller maxd  
creates more elements, and requires larger computer memory and longer CPU time.  In return, it leads to more accurate 
simulation results.  However, there should be a trade-off between memory consumption, CPU time, and calculation 
accuracy.  In the present calculations, we used a DELL PC equipped with one 2.8 GHz CPU and 2.0 GB memory.  The 
FEMLAB was found to be able to utilize up to 1.5 GB memory under the windows XP operation system. Such a 
memory usage corresponds to a limit of about 105 elements created in a simulation domain.  
 
We found that when maxd  equals to 0.04 µm (~1/20 wavelength), FEMLAB generates 104,460 elements for a 
simulation domain. This smallest  maxd  value is the calculation limit for the PC employed.  The simulation result under 
the limit situation is the most accurate one that we can approach. In Fig. 3 we compare the calculations under larger 

maxd  values (then smaller element numbers) with this limit calculation. Fig. 3a shows the relative errors of the stored 
energy under the first-order resonance around 823 nm in the 2µm-diameter microdisk against the change of the 
maximum element size.  It is evident that the computational error is less than 5% when maxd  is not larger than 0.1µm 
(~1/8 wavelength; corresponds to 18,780 elements in the present model).  The curve of the stored energy in the cavity 
vs. the element number used in the whole simulation domain is displayed in Fig. 3b. It is seen that the calculated energy 
storage inside the disk almost reaches to a constant value after 40,000 elements.  Therefore, we can confidently pick up 
a maxd  value of 0.05µm (68,560 elements) for the following calculations for the 2µm-diameter microdisk system.  The 
calculation error is as small as 0.18%.  Due to the memory limitation of the PC, certainly it is impossible to use such a 
small maxd  value for the 10µm-diameter microdisk system which is about 10 times of the area of the 2µm-diameter 
microdisk system. We selected a value of maxd = 0.15 µm (~1/6 wavelength) for the 10µm-diameter microdisk system.   
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Figure 3. (a) The computational error against the maximum element size; and (b) the convergence curve with respect to 
the element number used. 

 
The CPU time consumption is basically not a concern for an individual simulation run in the present calculations 
because each run only took several minutes in the PC. In order to get a resonant spectrum, however, hundreds of 
simulation runs are needed.  In particular, the resonant band is extremely fine for larger gaps due to the high-Q 
characteristic of WGM microresonances.  It takes dozens of runs to find a resonant band for each gap value in the 
WGM systems.  The whole simulation can be time-consuming.   
 

4. RESULTS AND DISCUSSION 
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To demonstrate the gap influences on the WGM resonant phenomena, the stored energy inside the resonator is 
integrated as a main variable used to create the resonant spectrum against the excitation wavelengths; and consequently 
the resonant spectrum is utilized for finding critical parameters of WGM resonators such as the Q-value and FWHM of 
the resonant mode. Further, the stored energy reflects that how many photons tunnel through the gap from the light-
delivery waveguide into the resonant microdisk.  It indicates the coupling efficiency of energy transfer.  By drawing the 
curve of the stored energy against the gap change (with a constant intensity of incident radiation) we can find an optimal 
gap for efficient light coupling. 
  
Figs. 4 a and b show the profiles of the stored energy versus the gap for the 10µm- and 2µm-diameter microdisk 
systems, respectively. The simulated results are represented by the discrete symbols. The results can be fitted into 
Lorentz fittings.  And then the maximum stored energy for each curve is found.  The results of the stored energy are 
finally normalized by the respective maximum stored energies.  In Fig. 4a, we considered two resonant modes: ~ 801nm 
(near infrared light) and ~ 608nm (yellow light), respectively.    In Fig. 4b, only one resonant mode was considered (~ 
822nm).  The gap varies from zero to 800nm with a step change of 50nm.  It is estimated from the fitted curves that the 
energy storage is the greatest when the gap is about 260nm for the excitation wavelength of 608nm (for the 10µm-
diameter microdisk system), about 480nm for the excitation wavelength of 801nm (for the 10µm-diameter microdisk 
system), and about 180nm for the excitation wavelength of 822nm (for the 2µm-diameter microdisk system), 
respectively.  Such optimal gap values represent the most efficient energy coupling in the respective resonator systems 
at the respective resonant wavelengths. The results reveal that an optimal gap for highly-efficient coupling does exist 
and the optimal gap is a function of the resonant mode!  
 
 

(a) the 10µm-diameter microdisk system (b) the 2µm-diameter microdisk system 
 

Figure 4. The stored energy (normalized) vs. the gap. 
 
It is easy to understand the reduction of coupling efficiency at gaps larger than the optimal gap, because it is well-
known that the evanescent field strength from a surface decays exponentially as a function of the distance to the surface. 
The longer the distance, the weaker is the strength.  The evanescent field is almost negligible at a distance over one 
optical wavelength involved. How can we understand the reduction of the coupling efficiency for gaps smaller than the 
optimal gap?  From the viewpoint of the evanescent strength, a smaller gap has a stronger strength and closer 
overlapping of the two evanescent fields from the resonator and the waveguide, respectively. A smaller gap affords 
more opportunities to photon tunneling. Indeed because of the enhanced photon tunneling, photons confined in the 
resonator tunnel back to the waveguide. As a result, a narrower gap reduces the coupling efficiency as a system. 
Therefore, an optimal gap for energy coupling exists as a trade-off between bidirectional coupling efficiencies.  
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Gorodetsky and Ilchenko8 experimentally observed a dip in the output intensity of a prism coupler in a fused-silica 
sphere with increasing gap. 
 
Further inspection of Fig. 4, we found that the full width at half maximum of the stored energy curves is narrow for 
short resonant wavelengths.  Photons in longer wavelengths can tunnel in a broader gap range.  Actually, the resonant 
intensity is a strong function of the mode number (affects the wavelength, see Eq. (1)). At a fixed gap of 300nm in the 
10µm-diameter microdisk system, for instance, the absolute value of the stored energy at the 801nm resonant mode is 
ten times larger than that at the 608nm resonant mode.  This indicates that the coupling efficiency for short wavelengths 
is lower.  The result is consistent with the findings by Hagness et al.29  We conclude that a longer resonant wavelength 
is preferable in the generation of WGM microresonances because of wider gap latitude in the coupling efficiency and 
that an optimal gap becomes more critical for shorter resonant wavelengths.   
 
The optimal gap for coupling also depends on the geometric configuration of the resonance system, in particular the 
curvature of the resonator.  Comparing the optimal gaps for the two different resonator systems, clearly a larger 
curvature (smaller resonator) requires a closer overlapping of the evanescent fields in the gap. Thus, the optimal gap 
decreases with the decrease of resonator size.  In Fig. 4b, the stored energy is relatively appreciable when the waveguide 
is in close contact (zero gap distance) with the 2µm-diameter resonator; while in Fig. 4a, the stored energy is almost 
invisible (as compared with the maximum stored energy) when the waveguide is in close contact with the 10µm-
diameter resonator. 
 
To better understand the gap effects on the coupling efficiency, we plot in Figs. 5 and 6 the distributions of the electric 
fields of the simulation systems for different gaps.  Three gaps are selected for each simulation system: one is before the 
respectively optimal gap, one is close to the respectively optimal gap, and one is after the respectively optimal gap.  It is 
seen that the EM fields inside the resonators in Figs. 5b and 6b (with gap close to the optimal values predicted in Fig. 4) 
are much stronger than those in the other resonators; whereas the EM fields in the waveguides in Figs. 5b and 6b are 
extremely weak because the majority of the energy is coupled into the resonators.  The results in Figs. 5 and 6 also 
confirmed that the resonant EM field is concentrated inside the inward ring close to the periphery of the resonator and 
the energy leakage from the 2µm-diameter microdisk is stronger than that from the 10µm-diameter microdisk. 
 
The gap effects on important resonant parameters like the FWHM and Q factor of a resonant mode are shown in Figs. 7 
a and b for the 10µm- and 2µm-diameter microdisk systems, respectively. The resonant mode is at 801nm for the 10µm-
diameter microdisk system and at 822nm for the 2µm-diameter microdisk system. The discrete symbols represent the 
simulated results and the variations can be fitted into the Boltzmann fittings. We found that with the increase of the gap 
from zero to 1000nm, the FWHM (unit: GHz) narrows and the Q factor increases. The fitted curves show that with the 
increase of the gap distance, the Q factor increases almost exponentially at the beginning before the gap reaches to the 
optimal gap for coupling; after passing the optimal gap, the increase of the Q factor slows down gradually and finally 
becomes quite flattened.  A maximum Q factor is reached at a gap about one wavelength of the resonant mode.  
However, the resonant energy in the resonator is extremely weak at this gap distance as shown in Fig. 4. Simultaneously 
considering Figs. 4 and 7, we suggest a trade-off between the coupling efficiency and the Q factor. For some 
applications such as WGM-based biosensors and high-resolution spectroscope, it is feasible to sacrifice somewhat of the 
Q factor to guarantee the resonance can be conveniently measured.  A gap located at half of the maximum stored energy 
after the optimal gap for coupling can be chosen as an optimum gap in which both the Q factor and coupling efficiency 
are high. 
 
Comparing Fig. 7a with Fig. 7b, it is seen that the achievable Q value for the 10µm-diameter resonator is over three 
orders of magnitude higher than that for the 2µm-diameter resonator. Hence, the Q factor shrinks considerably when the 
size of the resonator approaches to the resonant wavelength.  We also found that the stored energy inside the smaller 
microdisk decreased several orders of magnitude as compared with the counterpart.  Thus, a small resonator has low 
energy storage capacity and poor Q factor.  Buck and Kimble30 indicated that the Q factor falls approximately 
exponentially as the resonator size decreases below 10µm.  This agrees with our simple picture of the increase bending 
loss associated with a smaller microdisk. 
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(a) 50nm gap (b) 150nm gap (c) 400nm gap 

 
Figure 5. Electric field distributions for three selected gap values for the 2µm-diameter microdisk system at 822nm. 

 
 

   
(a) 250nm gap (b) 500nm gap (c) 750nm gap 

 
Figure 6. Electric field distributions for three selected gap values for the 10µm-diameter microdisk system at 801nm. 

 
Figs. 8 a and b show the resonance wavelength shifts against the gap variation for the 10µm- and 2µm-diameter 
resonator systems, respectively. The shift is defined as 0λλ −g , where 0λ is the resonance central wavelength under in-

contact condition (zero gap) and gλ is the resonance central wavelength corresponding to a gap. It is seen that with 
increasing gap the resonance wavelength down shifts in Fig. 8a, but up shifts in Fig. 8b.  The downshift tendency for the 
10µm-diameter resonator system is consistent with the experimental observation4 in a fused-silica microsphere of 
215µm in diameter.  However, the reason for opposite up-shift for the 2µm-diameter resonator system remains unclear.  
The shift could be very appreciable with increasing gap (~ 1nm in Fig. 8).  The maximum shift for the small resonator is 
larger than that for the large resonator.  However, the fitted curves indicate that the frequency shifts reach to stable and 
constant values after the gap distance increases to over 200nm in Fig. 8a and to over 300nm in Fig. 8b.  This implies 



Proc. of SPIE Vol. 6002 600204-10 

that the gap after a threshold value will not influence the resonant frequency.  This trait is of practical significance for 
applications using frequency shift characteristic such as in biosensors7, 26, 27.  
 
 

  
(a) the 10µm-diameter microdisk system (b) the 2µm-diameter microdisk system 

 
Figure 7. Gap effects on the FWHM (GHz) and Q factor. 

 
 
 

  
(a) the 10µm-diameter microdisk system (b) the 2µm-diameter microdisk system 

 
Figure 8. Gap effects on the resonant frequency. 

 
 

5. CONCLUSIONS 
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Nanofabrication techniques allow the realization of semiconductor photonic micro/nanodevices with precise control of 
the gaps separating microresonators and micron- or submicron-width waveguides. The scattering loss can be minimized 
to achieve simultaneously a high Q and high finesse by etching smooth side wall during fabrication. In this paper, the 
whispering-gallery mode microresonances were simulated for the two modeling systems with various gaps. The finite 
element method was employed for the simulations.  We first examined the simulation accuracy and sensitivity using the 
2µm-diameter microdisk system as an example.  It is found that when the maximum element size in the computationally 
sensitive regions such as the gap, the inward ring close to the cavity periphery, and the waveguide is below 1/8 of the 
wavelength involved, the computational error is less than 5% as compared to an extreme case.   
 
An optimal gap was found for maximum energy coupling from the waveguide to the resonator.  This optimal gap is a 
strong function of the wavelength of the resonant mode.  The shorter the wavelength, the smaller is the optimal gap for 
coupling.  The coupling efficiency is lower for shorter wavelengths.  The full width at half maximum of the stored 
energy curve vs. gap is narrow for short resonant wavelengths.  Photons in longer wavelengths can tunnel in a broader 
gap range.  The optimal gap is dependent on the geometric configuration of the resonant system as well.  The smaller 
the cavity size, the narrower is the optimal gap.  With increasing gap, the Q factor increases; while the FWHM 
decreases.  The Q factor increases exponentially at the beginning before the gap reaches to the optimal gap for coupling; 
after passing the optimal gap, the increase of the Q factor slows down; and when the gap approaches to the optical 
wavelength the Q factor is almost maximum and constant.  An optimum gap is then suggested at half maximum energy 
coupling where both the Q factor and coupling efficiency are high.   For small gaps, the resonance central frequency is 
strongly affected by the gap.  With increasing gap from in-contact to a couple of hundreds of nm, the frequency shift 
varies exponentially and could reach to the order of 1 nm.  For large gaps, the resonance central frequency is not 
affected by the gap. 
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