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ABSTRACT 
Micro/nanoscale radiation transfer in whispering-gallery 

mode (WGM) microcavities is investigated. Each cavity 
consists of a waveguide and a microdisk coupled in a planar 
chip.  In order to characterize the WGM resonance phenomena, 
studies of configuration parameters, specifically the microdisk 
size, the gap distance separating the microdisk and waveguide, 
and the waveguide width are numerically conducted. The 
finite element method is used for solving Maxwell’s equations 
which govern the propagation of electromagnetic (EM) field 
and the radiation energy transport in the micro/nanoscale 
WGM structures. The EM fields and the radiation energy 
distributions in the microcavities are then obtained. The 
scattering spectra for three different microdisk sizes are also 
obtained; and through which the WGM resonant properties 
such as the quality factor, the full-width at half maximum 
(FWHM), the free spectral range, and the finesse of the 
resonant modes are analyzed. It is found that the resonant 
frequencies and their free spectral ranges are predominantly 
determined by the size of the microcavity; while the FWHM, 
finesse, and quality factor are strong functions of the gap. 

 

INTRODUCTION 
The term whispering-gallery mode describes the 

resonance of photons that circulate around the inner surface of 
a dielectric medium of circular geometry as a result of total 
internal reflection (TIR).1 With size flexibility, mechanical 
stability, adaptability to integrated circuits, very high quality 
factor (Q value), and very small mode volume at optical 
frequencies, WGM microcavities are widely used for basic 
research and for applications. Stemming from extensive 
studies of Mie resonance in small particles,2 further studies are 
focusing on microspheres of fused silica with high-Q WGMs 
as a novel type of optical resonator.  Q > 109 has been 
demonstrated at near-infrared and red wavelengths.3 An 

important application of this cavity quantum electrodynamic 
effect involves miniature lasers.4,5  Other applications include 
high resolution spectroscopy,6 and optical biosensors,7,8 etc.  
Modes of this type possess negligible electrodynamically 
defined radiative losses, and are not accessible by free-space 
beams; and therefore, require employment of near-field 
coupler devices. At present, in addition to the well-known 
prism coupler with frustrated TIR, coupler devices include 
side-polished fiber couplers9 and fiber tapers.10 The principle 
of all these devices is based on providing efficient energy 
transfer to the resonant circular TIR guided wave in the 
resonator through the evanescent field of a guided wave or a 
TIR spot in the coupler. 

The advances in micro/nano-fabrication techniques have 
made it feasible to consider WGM optical resonators having 
physical dimensions of the order of optical wavelengths.  
Semiconductor WGM microcavities such as microdisks, 
microrings, and microcylinders can be easily miniaturized to a 
few microns in diameter, while maintaining a high Q.  They 
have attracted considerable attention in the literature, as they 
are promising ultracompact building blocks for add-drop 
filters,11 microlasers,12 all-optical switches,13 and sensing 
applications;14 and they open the route to a large area 
reduction of complex integrated photonic devices.15 

In recent years, WGM optical biosensors7,8 have been 
studied as a research field of attractive interest because of the 
great need in life sciences, drug discovery, and recent 
worldwide protection from the threat of chemical and bio-
terrorism. Usually the optical resonance techniques can be 
used to enhance the sensitivity of biosensor devices.16  The 
WGM miniature sensor possesses high sensitivity, small 
sample volume, and robust integrated property to make a lab-
on-a-chip device and may be used to identify and monitor 
proteins, DNA, and toxin molecules.  They can detect as few 
as 100 molecules as reported by Boyd and Heebner.14   
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In order to optimize the sensitivity of WGM based 
sensors, we must understand the micro/nanoscale radiation 
transfer and radiation-matter interactions in the evanescent 
field.  Experimental methods for conducting such a task are 
generally time-consuming and costly.  Analytical models2 
have been introduced to analyze optical resonant phenomena 
associated with small particles, such as the perturbation 
model.17 Analytical solutions are very useful and powerful in 
understanding the physical essence of the phenomena. 
Although they can reveal the individual intuitive resonance 
properties of a microcavity, it is hard for them to capture a 
completely real picture of a sensor as a system. For example, a 
perturbation theory is hardly able to account for the coupling 
of the evanescent fields in the nanoscale gap and the 
interactions of the resonator with surrounding individual 
molecules.  As a matter of fact, the evanescent field in the 
microcavity is very sensitive against the gap through which 
photons tunnel.  The Mie theory cannot describe well the 
photon tunneling effect.  A complete modeling of the EM and 
radiation field in the whole WGM structure is highly desired.  

 

 
Figure 1. Sketch of a WGM microcavity. 

Previously many WGM-based sensors have a structure of 
a microsphere and an eroded optical fiber coupling design. 
Although the Q-value for a microsphere-based resonator can 
be very high, such a configuration may have some flaws for 
use as an ideal sensor.  For instance, mass manufacturing of 
such devices can be difficult; and non-uniformity exists, 
especially in the control of the gap distance separating the 
light-delivery fiber and the resonator. The gap is a critical 
parameter for photon tunneling and may affect the Q-value 
and resonant frequencies.   

Here we consider sensors of a planar waveguide and 
microdisk coupling structure as shown in Fig. 1. Such devices 
can be manufactured on silicon-based thin films using 
conventional silicon integrated circuits (IC) processing with 
high uniformity and density. This cavity structure will further 
reduce the sensor size and enhance miniaturization of the 

devices. Planar WGM sensors possess high sensitivity, small 
sample volume, and robust integrated property for system-on-
a-chip applications. 

Maxwell’s equations can be used to describe the radiation 
transfer in WGM microcavity systems. More than 30 years 
ago, Silvester18 developed high order Lagrange elements and 
first applied the finite element method (FEM) for solving the 
EM field problems.  The present authors19 successfully applied 
the FEM to simulate the EM and radiation energy fields in 
WGM resonators consisting of a microsphere and an optical 
fiber.   

In this report, parametric studies through FEM 
simulations are made of the waveguide-microdisk coupling 
WGM microcavities.  The operating resonant frequencies are 
chosen in the near infrared range, which is ideal for 
biomaterials and biomolecules.  The parameters selected for 
study include the diameter of the microdisk, the gap distance 
separating the waveguide and microdisk, and the width of the 
waveguide.  Their effects on the WGM resonant phenomena 
will be scrutinized.  The characteristics of the EM field and 
radiation energy storage in the WGM resonators will be 
investigated.   

 

MODELING 
WGM resonance inside the microdisk is typically an 

equatorial brilliant ring, and this ring is located on the same 
plane as the waveguide. Further, the structure of the 
microcavities is planar. So it is feasible to use a two-
dimensional (2-D) theoretical model.  The time-dependent 
Maxwell’s equations are  

;

0;

HE E
t
EH H J
t

ρ µ
ε

ε

⎧ ∂
∇⋅ = ∇× = −⎪⎪ ∂

⎨
∂⎪∇⋅ = ∇× = +⎪ ∂⎩  

(1) 

where E  and H  are the electric and magnetic field vectors, 
respectively; ε  and µ  are the permittivity and permeability of 
the medium; ρ  is the electric charge density; and J  is the 
electric current density. 

For the electric field, since 0=ρ  and EJ σ= , we can 
derive the equation for E  as follows:  
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where σ is the electrical conductivity. We can transfer the 
above equation to the form of a time-harmonic wave by 
setting tierEtrE ω)(),( 0= . The coupled set of Maxwell’s 
equations is then reduced to a simple form: 

01;01 2222 =+∇=+∇ HHEE cc εω
µ

εω
µ    (3) 
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where we have introduced the complex permittivity 
)/(0 ωσεεεε icrc −=⋅=  and  λπω /2 c= ; c  is the speed of 

light in the medium and λ  is the light wavelength. Here, the 
complex index of refraction, , is conveniently 
introduced for the treatment of wave propagation; n is the real 
part of the refractive index and represents a spatial phase 
change of the electromagnetic wave; k  is the absorption index 
and stands for a spatial damping on the electromagnetic wave. 
The relationship between 

iknm −=

crε  and  is expressed 

by . 

m

nkiknmcr 2222 −−==ε

In the present study we consider the In-plane TE waves, 
where the electric field has only a z-component; and it 
propagates in the x-y plane.  Thus, the fields can be written as: 

( , , ) ( , ) i t
z zE x y t E x y e e ω=   

( , , ) [ ( , ) ( , ) ] i t
x x y yH x y t H x y e H x y e e ω= +     

At the interface and physical boundaries, the natural 
continuity condition is used for the tangential component of 
the magnetic field, i.e., 0=× Hn . For the outside boundaries, 
the low-reflecting boundary condition is adopted. The low-
reflecting means that only a small part of the wave is reflected, 
and that the wave propagates through the boundary almost as 
if it were not present. This condition can be formulized as 

0=+×⋅ zz EHne εµ . The light source term E0z, which 
propagates inwards through the entry of the waveguide, was 
treated as an electrically low-reflecting boundary expressed by 

zzz EEHne 02 εεµ =+×⋅ . 

The WGM resonances possess very high quality factors 
due to minimal reflection losses.  The quality factor Q is 
defined as a ratio of 2π stored energy to energy lost per cycle.  
From the energy conservation and resonance properties, we 
can deduce a simple approximate expression:20 

τπωωω 00 2/ =∆=Q , where ω0 is the resonant frequency, ∆ω is 
the resonance linewidth, and τ is the photon lifetime.  

From Maxwell’s equations, we can derive the energy 
conservation equation to describe the resistive and radiative 
energy, or energy loss, through Poynting’s theorem:21 
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where  is the computation domain and S  is the closed 
boundary of V . The term on the left had side of the above 
equation represents the radiative losses. The quantity 

V

HES ×=  is called as the Poynting vector. The first integral 
on the right hand side represents the rate of change in total 
energy. The second integral on the right hand side represents 
the resistive losses that result in heat dissipation in metallic 
materials.  

For dielectric materials, however, 0=J . Under the 
assumption that the material is linear and isotropic, we have 
constitutive relations as follows: 
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So the formula of Poynting’s theory is simplified to  
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This formula shows us that the change in total e
electromagnetic field is totally converted to radiative
There is no heat dissipation in this condition. Howeve
dielectric materials are dispersive (absorbing) med
exhibit energy losses because the presence of dispe
general signifies a dissipation of energy.  

(4) 

To discuss dispersion, let us consider an electrom
field of a single frequency. The differential form of 
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where "ε  and "µ  are the imaginary parts of ε  and
energy loss should be positive since the dissipation o
is accompanied by the evolution of heat (under the
increase of entropy).  It hints that the imaginary parts o
µ  are always positive for all substance and at all frequ

The finite element method is employed to simu
EM and radiation field and the details of the met
available in Quan and Guo19.  Thus, the descriptio
repeated here.  The commercial software FEMLAB w
for the finite element solution and for pre- and post-pr
A typical simulation domain is a 20µm × 25µm rec
area with a centered microdisk.  The length of the wa
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is extended to the edge of the simulation domain.  A laser 
beam from a tunable continuous-wave (CW) laser is coupled 
into the left end of the waveguide to excite the resonance.  The 
frequency of the incident laser varies between 365 THz 
(822nm) and 375 THz (800nm).  In the nanometer scaled gap 
separating the waveguide and microdisk, photons tunnel and 
the light will cross the gap and enter into the microdisk.  When 
the frequency of the input light is the same as the natural 
resonant frequency of the system, WGM phenomenon occurs.  
At the resonant frequency, the scattering intensity from the 
microdisk will increase sharply and form a peak in the 
intensity-frequency spectrum.   

In the simulations, the model geometry is meshed by 
51,400 triangle elements. The software automatically scales 
down the domain into different spatial levels to generate fine 
meshes around the physically sensitive regions, like the gap 
and the waveguide. Since the resonant rings are usually 
located in a thin layer beneath the cavity surface, we manually 
scale the cavity into two regions such that the meshes in the 
ring area can be further refined. The general computational 
resolution of wavelength is 0.5nm, but special attention is paid 
to the resonance frequencies where 0.01nm resolution is 
adopted.  To conduct parametric studies, the diameter of the 
microdisk varies between 10 and 15µm.  The width of the 
waveguide changes between 2 and 3µm.  The gap between the 
microdisk and the waveguide varies between 100 to 300nm.  
Both the microdisk and the waveguide are made from silicon 
nitride (Si3N4) whose refractive index is 2.01 against the 
operating wavelength.   

 

RESULTS AND DISCUSSION 
First we try to demonstrate the EM fields and radiation 

energy distributions in the WGM microcavities.  Figures 2 and 
3 illuminate the distributions of the electric field and the 
radiation energy, respectively, for a microcavity of 15µm in 
diameter.  Three different cases under off-resonance, the first-
order resonance, and the second-order resonance are selected 
for comparison.  The first- and second-order resonance 
frequencies were found at 373.78 THz (λ=802.61nm) and 
372.96 THz (804.37nm), respectively, when the surrounding 
medium was air.  The off-resonance frequency was selected at 
372.67 THz (λ=805nm).  The gap which is defined as the 
smallest distance between the waveguide and microdisk is 
230nm and the width of the waveguide is 2µm.  These are the 
general data in the computations if not specified otherwise. 

From Fig. 2, it is clearly observed that the EM field exists 
in the microdisk no matter there is a WGM resonance or no 
resonance.  Thus, photons tunnel from the waveguide to the 
microdisk because the gap distance is less than one 
wavelength.  Under the first-order resonance, a brilliant ring in 
the EM field is formed inside the microdisk in the vicinity 
close to the peripheral surface.  While under the second-order 
resonance, there are two bright rings inside the microdisk.  
The EM field in the internal ring is stronger than that in the 

outer ring.  For the EM field in the waveguide, however, the 
off-resonance case has the strongest strength and the first-
order resonance case has the weakest strength. 

 

Figure 2. Electric fi -resonance, the 
first-order resonanc

el  off
e, and the second-order resonance (from 

left to right) for a microcavity of 15µm in diameter. 

 

Figure 3 rgy dist butions under off-resonance, th  first-

 

 Fig. 3, it is seen that the microdisk and waveguide 
coup

d distributions under

   

. Ene ri e
order resonance, and the second-order resonance (from left to 

right) for a microcavity of 15µm in diameter. 

From
ling resonator has a very strong energy storing property in 

the resonator when WGMs occur.  The majority energy stores 
in the thin ring close to the peripheral surface of the microdisk 
for the first-order resonance.  For the second-order resonance, 
the energy is mostly stored in the internal ring.  However, 
there still exists an outer ring which is thin and weak as 
compared with the internal ring.  Thus, the scattering intensity 
from the microdisk surface under the second-order resonance 
is expected to be weaker than that under the first-order 
resonance.  For the case of off-resonance, the energy is 
confined inside the waveguide and energy storage in the 
resonator is almost invisible.  The ratio of the radiation energy 
storing in the microdisk to the radiation energy passing 
through the waveguide is 10.5 for the first-order resonance 
shown in Fig. 3, whereas it is only 0.008 for the case of off-
resonance. The microdisk can absorb and store the majority of 
the radiation energy when WGM resonance occurs.  This leads 
to the enhancement of the evanescent radiation field around 
the periphery of the resonator, where sensitivity to any 
external perturbation is maximal. 
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Figures 4 and 5 show the first-order resonance electric 
field and radiation energy distribution for microcavities of 
10µm in diameter and 5µm in diameter, respectively. The 
resonance frequency is 377.44 THz (λ=801.198nm) for the 
microcavity of 10µm in diameter, and 371.65 THz 
(λ=807.213nm) for the microcavity of 5µm in diameter.  It is 
seen that the resonance mode of the small disk is confined in a 
smaller room and occupies more relative area than the large 
one. However, the ratio of the radiation energy storing in the 
disk to the radiation energy passing through the waveguide is 
13.5 for the 10um-in-diameter microcavity and 5.3 for the 
small disk. This phenomenon results from the compatibility of 
disk and waveguide.  In both two simulation cases, we kept 
the width of waveguide and only reduced the size of disk, i.e., 
the incident energy flux is fixed. The energy storage capacity 
of the small disk was saturated at this energy flux in the 2µm 
wide waveguide.  The way to solve this problem is to reduce 
the width of the waveguide to a well compatible range with 
the disk. After reducing the width to 0.5µm, the ratio of the 
radiation energy storing in the small disk to the radiation 
energy passing through the waveguide rises to 32.9.  Thus, the 
waveguide width affects the energy coupling efficiency. 

 

  

Figure 4. Electric field and energy distribution of the first-order 
resonance for the microcavity of 10µm in diameter. 

 

 

 

Figure 5 Electric field and energy distribution of the first-order 
resonance for the microcavity of 5 µm in diameter. 

 

The resonator configuration parameters like the microdisk 
size, the gap between the waveguide and microdisk, and the 
width of the waveguide certainly affect the resonance 
phenomena and signal intensity.  To investigate the parametric 
influences, we obtained the scattering spectra of radiation 
energy outflow (Poynting’s vector from the microdisk 
peripheral surface) with varying excitation frequencies 
between 365 THz and 375 THz for different microdisk 
diameters, gap distances, and waveguide widths, respectively.  
Figure 6 shows the scattering spectra for three different 
microdisk diameters: 10µm, 12.5µm, and 15µm.  The width of 
the waveguide and the gap between the waveguide and 
microdisk are fixed at 2µm and 230nm, respectively.  The 
resonance data retrieved from these scattering spectra are 
listed in Table 1. The parameters include the resonant 
frequency and its corresponding wavelength, the quality factor, 
the full-width at half maximum (FWHM) of the resonant 
frequency band, the resonant frequency interval represented 
by the free-spectral range (FSR, = periodicity of resonance 
peaks), and the finesse of the resonant mode defined as F = 
FSR/FWHM.  Three first-order resonant frequencies (modes) 
were found for each of the cases in the frequency range 
considered.  

 
Figure 6. Scattering spectra for different microdisk sizes of d = 

10µm, 12.5µm, and 15µm, respectively. 

 

Since both the gap and waveguide width do not affect the 
resonance modes, it is not easy to find differences in the 
scattering spectra for different gap distances and waveguide 
widths.  Figures 7 and 8 portray the gap and waveguide width 
effects, respectively, on the WGM resonant frequencies, the 
corresponding FWHM and FSR, and the quality factor Q.  All 
the data were retrieved from the respective scattering spectra 
and are listed in Table 1.  Four different gap distances of 
100nm, 200nm, 230nm, and 300nm, and three different 
waveguide widths of 2.0µm, 2.5µm, and 3.0µm were 
considered.  The surrounding medium was air for all 
simulation conditions.  There are three whispering-gallery 
modes (RF-1, RF-2, and RF-3) in the frequency range 
considered, and each mode has its own FWHM and Q values. 
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Figure 7. Effects of the gap on the WGM resonant frequencies, 

FWHM, FSR, and quality factor Q. 
 
From Figs. 6 to 8 and Table 1, it is found that the 

microdisk size affects significantly the resonant frequencies 
and their intervals.  The FSR value increases with the decrease 
of the diameter of the microdisk.  However, the microdisk size 
does not appreciably influence the quality factor and the 
finesse.  On the other hand, the gap and the waveguide width 
do strongly affect the quality factor and the finesse of the 
WGM.  But the gap has a slight effect on the resonant 
frequencies and the FSR, and the influence of the waveguide 
width on the resonant frequencies and the FSR is negligible.  
The decrease of the gap results in a broadening in the FWHM 
of the resonant frequency band, and consequently reduces the 
quality factor and the finesse of the resonant frequencies.  The 
wider is the waveguide, the larger are the quality factor and 
the finesse of the resonant modes.  The quality factors of these 
resonant modes are varying between 10,200 and 185,255 in 
the present studies.  The finesse of these resonance modes is in 
a range from 92.0 to 1637.5.  The FSR of the resonant modes 
for the 15µm-diameter microdisk are slightly varying between 
3.266 THz and 3.281 THz for all the specified gap distances 

and waveguide widths.  Thus, the WGM frequencies are 
predominantly determined by the microdisk diameter.   The 
gap distance and the waveguide width affect mainly the 
resonance quality. 

 
Table 1.  Resonance data from the scattering spectra. 

Resonance 
frequency 
fR (THz) 

Excitation 
Wavelength 
λR (nm) 

Quality 
factor 

Q 

FWHM 
(THz) 

FSR 
(THz) 

Finesse 
F 

 
d = 10.0µm, g = 230nm, w = 2.0µm 

364.582 822.86 21,446 0.017 
369.526 811.85 20,529 0.018 
374.490 801.09 22,029 0.017 

4.944 

4.964 

282.5 

283.6 
 

d = 12.5µm, g = 230nm, w = 2.0µm 

366.321 818.53 22,895 0.016 
370.252 810.26 24,683 0.015 
374.201 801.71 22,011 0.017 

3.931 

3.949 

253.6 

246.8 
 

d = 15.0µm, g = 230nm, w  =2.0µm 

367.235 816.92 21,602 0.017 
370.501 809.72 26,464 0.014 
373.780 802.61 23,361 0.016 

3.266 

3.279 

210.7 

218.6 
 

d = 15.0µm, g = 100nm, w = 2.0µm 

367.197 817.00 10,200 0.036 
370.464 809.79 10,585 0.035 
373.743 802.69 12,056 0.031 

3.267 

3.279 

92.0 

99.4 
 

d = 15.0µm, g = 200nm, w = 2.0µm 

367.224 816.94 19,328 0.019 
370.495 809.73 23,155 0.016 
373.776 802.63 21,987 0.017 

3.267 

3.281 

186.7 

198.8 
 

d = 15.0µm, g = 300nm, w = 2.0µm 

367.235 816.91 183,617 0.002 
370.510 809.70 185,255 0.002 

   373.791 802.59 124,597 0.003 

3.275 

3.281 

1,637.5 

1,312.4 
 

d = 15.0µm, g = 200nm, w = 2.5µm 

367.215 816.96 26,230 0.014 
370.492 809.73 21,794 0.017 
373.765 802.64 23,360 0.016 

3.277 

3.273 

211.4 

198.4 
 

d = 15.0µm, g = 200nm, w = 3.0µm 

367.217 816.96 40,802 0.009 
370.488 809.74 37,049 0.010 
373.764 802.65 46,721 0.008 

3.271 

3.276 

344.3 

364.0 
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Figure 8. Effects of the waveguide width on the WGM 

resonant frequencies, FWHM, FSR, and quality factor Q. 
   

CONCLUSIONS 
The radiation transfer and resonant phenomena in waveguide-
microdisk coupling WGM microcavities were investigated.  
The time-dependent Maxwell’s equations were utilized for 
describing the EM field and radiation transfer, and solved by 
the finite element method.  The EM field and the radiation 
energy distribution in three different sizes of microcavities 
were shown.  When WGM resonance occurs, photon tunneling 
from the waveguide to the cavity is greatly enhanced and 
significant radiation energy is stored in the microcavity.  The 
energy storage capability depends not only on the cavity size, 
but also on the compatibility of the waveguide.  Parameters 
like the microdisk size, the gap separating the microdisk and 
waveguide, and the waveguide width all affect the radiation 
transfer and resonant phenomena. The WGM resonant 
frequencies and their intervals are predominantly determined 
by the microdisk diameter.  The gap and the waveguide size 
have little effect on the resonant frequencies and their intervals.  
However, the gap as well as the waveguide width does 
strongly influence the qualify factor and the finesse of the 

resonant modes. In particular, the gap effects should not be 
overlooked. An optimal gap may exist for photon tunneling 
under WGM resonances. 
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