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ABSTRACT 
The objective of this research is to develop an appropriate 

model for simulating the transient heat transfer processes in 
tissue welding subject to irradiation of ultrashort laser pulses.  
The ultrafast laser tissue welding process is modeled in three 
steps. First, there is an immediate local temperature response 
due to radiation absorption during an ultrashort time period. 
The transient discrete ordinate method is employed to simulate 
the ultrashort laser pulse transport in tissue.  The temporal 
radiation field is obtained and the lumped method is used for 
predicting the local temperature response. After a stable local 
temperature profile is achieved, the second step starts, in which 
the hyperbolic heat conduction model is adopted to describe the 
heat transfer.  The thermal wave behavior is observed.  It is 
found that the hyperbolic wave model predicts a higher 
temperature rise than the classical diffusion model.  After 
about five thermal relaxation times the thermal wave behavior 
is substantially weakened and the heat diffusion predominates.  
The heat diffusion equation can accurately describe the heat 
transfer thereafter.  

 
INTRODUCTION 

Since the first report on laser radiation [1], many practical 
and potential applications have been investigated. Among them, 
medical laser surgery – a special laser material processing – 
certainly belongs to the most significant advances of the past 
several decades.  Laser welding of tissue is a surgical 
technique for bonding of tissues by using a laser beam to 
activate photothermal bonds and/or photochemical bonds.  
This method is potentially more advantageous than the 
conventional suturing technique because it is a non-contact 
method, which does not introduce foreign materials, and it is 
capable of forming an immediate watertight seal.  For over 30 

years, laser tissue welding has been extensively studied [2-4] as 
an alternative tool for tissue closure. 

Laser tissue welding can be augmented with the use of 
solders [5]. The solders can include chromophores that are used 
to control the laser penetration such that it is concentrated at the 
fusion site. Since extrinsic chromophores are not limited to the 
absorption characteristic of native tissue or body fluids, the 
solders may be tailored to selectively absorb energy that passes 
through normal tissue. The solders can also include other 
biochemical constituents to improve the weld strength and/or 
weld leakage characteristics. Typical additives include native 
collagen, gelatinous collagen, fibrin, elastin and albumin.  

Suitable lasers deliver wavelengths that are highly 
absorbed either by water (a major component in tissues), or the 
tissue’s natural chromophores, or solders (in the case of laser 
soldering). For example, argon lasers (488 and 514 nm) and 
KTP lasers (532 nm) were used with hemoglobin [6]; Nd:YAG 
(1.064 and 1.320 µm) and CO2 (10.6 µm) lasers were used with 
water [7]. The peak absorption wavelengths of two commonly 
used chromophores - indocyanine green (ICG) and methylene 
blue (MB) - are 805 nm and 665 nm in protein solder [8], 
respectively.  

Independent of the choice of chromophores, more energy 
is generally absorbed near the upper portion of the solder, 
closer to the laser spot. A temperature gradient is then 
established over the depth of the solder. Depending on the 
temperature gradient and the laser exposure, the upper portion 
of the solder can become over-coagulated while the most 
critical region, such as the solder/tissue interface, does not get 
fully coagulated.  Such under-coagulated soldering has been 
shown to create unstable bonds with tissue [5]. Hence, clinical 
use of laser welding and soldering has been limited [2] because 
of unreliable fusion strength, possibly excessive thermal 
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damage of tissue, non-uniformity in heating, etc.  Further 
research both numerically and experimentally is required. 

Prediction of thermal response is a critical issue in laser 
tissue welding and soldering in order to choose optimal laser 
parameters including wavelength, pulse duration and repetition 
rate, beam size and shape, output power, and so on. In order to 
achieve optimum welding strength, a proper temperature at the 
welding region was reported at 62.2 ± 2°C [9].  Pulsed lasers 
were applied to reduce the collateral thermal damage [10, 11]. 
With the rapid advance of laser technology, the current state-of-
the-art ultrafast lasers can reach to ultrashort time duration of a 
few femtoseconds. Of course, femtosecond lasers are generally 
considered for use in laser ablation due to their extremely high 
flux. But picosecond lasers with moderate output power may be 
considered for tissue welding and/or soldering.  To this end, it 
is needed to simulate heat transfer in ultrafast laser tissue 
welding and/or soldering which can be modeled as a coupled 
radiative-conductive heat transfer problem.  

First the knowledge of radiation heat transfer in tissues 
must be understood. This involves the solution of time-
dependent equation of radiation transfer for predicting ultrafast 
laser radiation absorption inside a tissue. In recent years, the 
research on ultrafast laser transport in turbid media has 
attracted increasing attention [12]. The present authors have 
extensively studied this topic in a series of their publications 
[13-16] under various conditions.  Most recently Kim and Guo 
[17] numerically investigated radiation heat transfer in ultrafast 
laser tissue welding and soldering using high-order of accuracy 
discrete-ordinate method (DOM).  

Second the temperature field is modeled as a heat 
conduction problem.  For irradiation times less than 10 sec, 
the influence of blood perfusion plays a minor role and is 
negligible [18]. Fourier heat conduction equation (parabolic 
type) implies an infinite speed of thermal propagation and is 
traditionally used for describing heat diffusion.  For a physical 
process occurring in very short time interval than that required 
for attaining thermal equilibrium, however, it has been noticed 
that heat wave theory must be adopted [19-21]. The thermal 
wave postulate leads to hyperbolic heat conduction equations 
and suggests a finite speed of thermal propagation.  Mitra et 
al. [22] and Tzou [23] provided some experimental evidences 
of hyperbolic heat conduction.  Thermodynamic validity of 
the hyperbolic equations and the range of parameters where 
non-Fourier considerations are significant have also been 
examined [24, 25].  Glass et al. [26] approached the 
hyperbolic conduction problems numerically using 
MacCormack’s scheme.  Some other numerical methods [27-
30] have also been recently developed. 

Vedavarz et al. [25] have analyzed the relaxation time of 
thermal wave for various materials. They found that the 
relaxation time of biological tissues was in the range of 1-100 
sec at room temperature, which are several orders of magnitude 
larger than that of metallic and semiconductor materials. 
Kaminski [20] estimated the thermal relaxation time between 
20 and 30 sec for meat products.  Mitra et al. [22] measured a 
16 sec thermal relaxation time for processed meat.  Such 
larger relaxation times in biological tissues make the hyperbolic 

heat conduction specifically significant in the thermal modeling 
of laser-tissue interactions.  

The objective of this work is to analyze the thermal 
response in tissues subjected to irradiation of ultrashort laser 
pulses with potential applications to ultrafast laser tissue 
welding and soldering and other medical applications of lasers 
in which thermal effects are significant. In the present study, 
the ultrafast radiation heat transfer in tissues is governed by the 
time-dependent equation of radiation transfer (ERT) in which 
the radiation wave is propagated with the speed of light. The 
transient ERT is solved using the transient DOM method. The 
hyperbolic heat conduction equations are solved using the finite 
difference method based on MacCormark’s scheme. The speed 
of thermal wave is several orders of magnitude smaller than 
that of light. Thus, the coupling of radiative-conductive heat 
transfer involves two different time scales.  In order to 
examine the non-Fourier effects, the transient thermal 
responses obtained from hyperbolic heat conduction modeling 
are compared with those obtained from the classical parabolic 
heat diffusion equation.  

 
MATHEMATICAL MODELS 
 
Governing Equations 

The speed of thermal wave tc is defined as  

τα=tc  ,               (1) 
where α  is the thermal diffusivity and τ  is the thermal 
relaxation time. The reported thermal diffusivity of tissues is in 
the range of 0.1 – 0.2 mm2/s [31,32].  Suppose α = 0.15 mm2/s 
and τ = 15 s, then ct = 0.1 mm/s.   

Radiation is transported in the speed of light, i.e. c = 0.2 
mm/ps in tissue. It is 12 orders of magnitude faster than the 
speed of thermal wave.  Thus, during the time scale of 
ultrafast radiation transport (less than 1 ns) the transport of 
thermal wave is negligible.  The heat transfer in ultrafast laser-
tissue interaction is a multi-scale and multi-physics problem.  

Consider a collimated laser pulse incidence upon a 2-D 
biological tissue shown in Fig. 1.  The local temperature 
response of the tissue to an ultrashort laser pulse can be simply 
expressed as 

),,(),,( tyxq
t

tyxTC radp ⋅∇=
∂

∂ρ ,        (2) 

where ),,( tyxq rad⋅∇  is the divergence of radiative heat flux 
due to radiation absorption that is calculated by 

)4(),,( GItyxq barad −=⋅∇ πσ ,             (3) 

where aσ  is the absorption coefficient of the tissue and bI  
is the black body emissive power which is negligible because 
the tissue can be treated as a cold medium as compared to the 
large flux of laser beam. The incident radiation, G, is a 
direction-integrated radiation intensity and can be obtained by 
the summation of angle-discretized radiation intensity.  

To calculate the radiative intensity lI  in a discrete 
ordinate, time-dependent ERT in discrete-ordinate format is 
introduced: 
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where lξ and lη are the directional cosine in a discrete 
ordinate direction, eσ  is the extinction coefficient that is the 

sum of the absorption and scattering coefficients, and lS  is 
the radiative source term from the laser radiation.  

After the ultrashort pulse effect is diminished in a very 
short time period, the temperature response reaches to a pseudo 
steady state; and then thermal wave transport starts.  To 
predict the transient temperature field during thermal wave 
transport, the hyperbolic heat conduction equations are 
introduced [19-21]:  

x
tyxTktxq

t
txq

xcond
xcond

∂
∂

−=+
∂

∂ ),,(),(
),(

,
,τ ,      (5-1) 

y
tyxTktyq

t
tyq

ycond
ycond

∂
∂

−=+
∂

∂ ),,(),(
),(

,
,τ .     (5-2) 

where k is the thermal conductivity, T and q represent 
temperature and heat flux, respectively. 

The energy equation is expressed as  
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Here ρ is the density and pC  the specific heat. 
For the sake of analysis, the hyperbolic conduction 

equations and energy equation are converted to non-
dimensional forms as follows: 
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where non-dimensional variables are defined by 
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In which, iT and refT  are the cold tissue and reference 
temperatures, respectively. 
 
Boundary Conditions 

For radiation heat transfer, reflection and refraction 
governed by Snell’s law and Fresnel equation, respectively, are 
considered at the tissue/are interface. At the rest boundaries, 
diffuse reflections are considered.  For details, please refer to 
our recent publications [16, 17].  

The incident laser sheet has a Gaussian profile both 
temporally and spatially and can be expressed by 
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in which 0cI  is the peak amplitude of the intensity which is 
set as 0.06 in the present calculations, pt  is the pulse width, 
and ν  is the spatial variance factor. The Gaussian spatial ratio 

D/ν  is chosen as 1.0, where D is the width of the laser sheet.  
The reference temperature is calculated from the incident laser 
pulse by 
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For hyperbolic heat conduction, the boundary conductions 

are specified below.  
0),,( =ξηχθ , for )10/(or0 max ατηηη W===  

            (11-1) 
0),,( =ξηχθ , for )10/(max ατχχ L==     (11-2) 

)(*
∞−= θθhQx , for χ = 0                    (11-3) 

where ∞θ is the non-dimensional ambient temperature and 

khh /* ατ= .  h is the heat transfer coefficient.  
The following lists several assumptions we adopted when 

set up the present model: 
(1) The lumped method is used for predicting local 

temperature response during the ultrashort pulse period. Since 
the effective laser exposure time for each pulse is less than 1 ns, 
while the thermal speed in tissue is about 10-10 mm/ns, the 
thermal propagation and diffusion for the local temperature 
response is negligible. 

(2) In order to heat the tissue to target temperature, pulse 
trains in a short time period are needed.  Here we only assume 
one pulse. 

(3) Thermal radiation emission at the tissue/air interface is 
negligible because the surface temperature is low such that the 
blackbody intensity is much smaller than the incident laser 
intensity.  

(4) The tissue optical and thermal properties are thermally 
stable during the tissue welding process. 

(5) Thermal evaporation during the welding process is not 
considered. 

(6) The phase change (from solid to soft) of tissue in the 
welding region is not taken into account. 

 
Numerical Schemes 

To solve the time-dependent ERT, the transient DOM is 
employed.  The tissue geometry is divided by a uniform grid 
system of 200200× .  The solid angle is divided by a 
quadrature set of )2( += NNM  discrete ordinates for NS  
method.  In the present study, we use the 10S  scheme.  The 
time step selected is 0.2 ps. Details of the numerical schemes 
have been described in our recent publications [13-17]; thus, 
they are not repeated here. 
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To solve the hyperbolic heat conduction equations, 
MacCormack’s predictor-corrector scheme is adopted. The 
hyperbolic equations include the discontinuities in front of 
thermal wave. MacCormack’s predictor-corrector scheme has 
been known to deal with wave propagation very well in a 1-D 
hyperbolic heat conduction problem [26]. Thus, it is extended 
to the 2-D problem in the present study.  The discretized 
forms of these equations are as follows: 

Predictor: 
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To solve these finite difference equations, the same grid 
system as the radiative transfer problem is chosen. The non-
dimensional time step for the thermal wave problem is selected 
as the same as the grid size, i.e., ηχξ ∆=∆=∆ , such that a 
unity Courant number is used. 
  
RESULTS AND DISCUSSION 

The sketch of the tissue geometry is shown in Fig. 1. For 
simplicity, we considered L = W = 15.395 mm such that 

1maxmax ==ηχ  and the effect of tissue dimension on the 
temperature profile in the welding or soldering region is 
minimized.  The width of the welding gap was 2.309 mm and 
the depth of the welding gap was W/5.  The optical properties 
of the tissue were assume to be aσ  = 0. 1 mm-1 (selective 
absorption) and sσ = 1.9 mm-1 (reduced scattering coefficient). 
We didn’t consider the use of solder to enhance the absorption 
in the welding region.  Thus, the optical properties in that 
region are assumed to be the same as the tissue. Other 
parameters include: α = 0.15 mm2/s, 310=iT K, 
and ( )KmJ/102.4 36 ⋅×=pCρ . The ultrashort laser pulse width 
was 10 ps and the width of incident laser sheet was 3.079 mm.  

Figure 2 shows the profiles of the divergence of radiative 
heat flux along two straight lines in the optical axis direction at 

several selected time instants. For Fig. 2 (a) where 5.0=η  (it 
is the optical axis and center line), a steep gradient of the 
divergence of radiative heat flux is found for early time instant 
(t = 20 ps).  As time advancing, the profiles become flat and 
the magnitude of overall strength decreases.  At t = 200 ps, 
the profile shows a quite symmetric shape against the central 
point at 5.0=χ  and its magnitude drops to the order of 10-11.  
This implies that the radiation absorption of this pulse has 
almost been completed by this time stage.  For Fig. 2 (b) 
where 2.0=η  (the line is away from the optical axis), the 
profile at t = 20 ps is even lower than that at t = 40 ps. This 
means that the peak laser intensity is delayed to reach the line.  
Generally the divergence of radiative heat flux is smaller than 
its counterpart in Fig. 2 (a). However, the difference between 
these two figures decreases as time matches.  For example, the 
profiles in Figs. 2 (a) and (b) are quite similar at t = 100 ps and 
200 ps, respectively.   

Within the ultrashort time regime, the temporal profiles of 
temperatures at several selected positions are exhibited in Fig. 
3.  Two lateral positions ( 5.0=η and 0.4) and varying depth 
positions were chosen for comparison.  At all locations, the 
temperature profiles increase rapidly within about 10 ps. Then 
they become very flat in a long time period.  This is because 
radiation absorption can be completed in about one pulse width 
time duration.  In most areas a stationary temperature profile 
is achieved within a time period of several pulse widths.  
Thus, we only need to compute the radiation heat transfer and 
initial local temperature response up to the order of 10 to 20 
times of the laser pulse duration.  In the following studies, the 
initial temperature field for heat conduction simulation are 
based on the local temperature profile obtained at time instant 
of t = 200 ps.   

In Fig. 4, the spatial variance of temperature along the 
optical axis direction is investigated. The local temperature 
increases as time advances and then reaches to a pseudo stable 
condition at and after t = 200 ps but before thermal wave starts.  
It is seen that the gradient of the temperature variations along 
the optical axis (η = 0.5) is quite appreciable. However, the 
gradient for a position (η = 0.2) retarding from the optical axis 
is relatively smooth in the segment of χ < 0.2.  It suggests 
that, it may be necessary to consider a non-direct irradiation to 
the welding area in order to improve the uniformity of heating.  

Figure 5 shows the contours of the initial local temperature 
distribution at three time instants.  At early time stage (t = 20 
ps), the temperature field is concentrated on the laser deposition 
area but the magnitude of it is small. As time proceeds, the 
temperature field is propagating to the surrounding tissue due to 
radiation transport and the temperature reaches to a high level 
due to the accumulation of radiation absorption.  After t = 100 
ps and before the start of thermal wave propagation (may take t 
= 0.001τ), the local temperature field reaches to a steady state 
and maintained at a higher temperature value.  If tissue closure 
would complete at this time period, it could minimize the 
thermal damage generated due to heat wave and diffusion. 

Following the arrival of a pseudo stable local temperature 
field within a short time period the thermal wave propagation 
starts and the temperature field is governed by the hyperbolic 
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heat conduction equations.  To validate the code for 
hyperbolic conduction simulation, a comparison between the 
present numerical simulation and a published analytical 
solution [26] for hyperbolic conduction in a 1-D slab is shown 
in Fig. 6. It is seen that the present calculations match the 
counterparts of analytical solution very well.   

 Now, the numerical simulation is extended to the 2-D 
welding case. The temperature profiles along three selected 
cross lines are exhibited in Figs. 7 (a), (b) and (c), respectively. 
Several time instants are selected for comparison. The wave 
behavior of temperature propagation is very obvious in the 
figures. The local temperature profiles at initial stage due to 
radiation absorption in the ultrashort time period show a perfect 
Gaussian distribution. Starting from 05.0=ξ  in Fig. 7 (a), the 
evolution of thermal waves takes place. The profiles are 
symmetric against the center.  The amplitude of temperature 
wave gradually decreases as time marches.  As the wave 
propagates from the center position to the tissue edge, the wave 
peak becomes small. At long time stage, the wave behavior 
retards and gradually disappears. Then the diffusion process 
starts.  Similar wave behavior is shown in Fig. 7 (b) and (c) as 
well. However, the onset time of wave evolution is delayed 
to 1.0=ξ  in Fig. 7 (b) and to 2.0=ξ in Fig. 7 (c). 
Interestingly, the hyperbolic temperatures in Fig. (c) are even 
higher than the local temperatures resulting from initial 
radiation absorption. This is the evidence of thermal wave 
propagation from the laser spotting area.  

The hyperbolic temperature field in the tissue and its time 
histories are depicted in Fig. 8. At early time instants the 
temperature response is confined in a small area close to the 
laser spot. As time increases, the thermal influencing zone 
(higher temperature than surrounding area) enlarges with clear 
wave evolution inside the zone.  At long time stage ( 5.0=ξ ), 
a diffusion field is forming in the whole tissue model.  

To understand well the hyperbolic effects, the temperature 
profiles predicted by the hyperbolic model and Fourier 
parabolic model, respectively, are compared in Fig. 9, where 
the comparisons of the temporal variance of temperature 
profiles at different locations are presented. In hyperbolic 
conduction modeling, wave behavior exists and the temperature 
changes periodically with a decreasing amplitude.  In 
parabolic conduction modeling, the temperature decays 
exponentially and more slowly than the hyperbolic prediction.  
Also the predicted maximum temperature values by the 
hyperbolic model are much larger than those by the parabolic 
model. In order to prevent the overheating in laser tissue 
welding, an appropriate hyperbolic model must be adopted for 
the heating time shortened than about five thermal relaxation 
times.  Thereafter, a diffusion model is accurate as we can see 
from the comparisons in Fig. 9. 

 
CONCLUSIONS 

A mathematical model was developed to simulate the 
multi-scale and multi-physics heat transfer problem in ultrafast 
laser tissue welding and soldering.  Subject to the incidence of 
an ultrashort laser pulse, the local temperature inside the tissue 
was found to rise very fast and this rise was purely because of 

local radiation absorption resulting from transient radiation heat 
transport.  The radiation transport was more than 10 orders of 
magnitude faster than thermal wave propagation. During an 
ultrashort time period, the local temperature field reached to a 
pseudo steady state until the start of thermal wave propagation. 
The thermal wave phenomenon can be well described by the 
hyperbolic heat conduction equations.  The wave behavior 
was observed from the contours of the 2-D temperature field as 
well as the temperature profiles along the optical axis and cross 
lines.  The evolution of thermal wave took place earlier near 
the laser beam spot.  As time increases, the thermal 
influencing zone enlarges with clear wave evolution inside the 
zone. The difference between hyperbolic modeling and 
parabolic modeling was obvious. In hyperbolic conduction 
modeling, wave behavior exists and the temperature changes 
periodically with a decreasing amplitude. In parabolic 
conduction modeling, however, the temperature decays 
exponentially and more slowly than the hyperbolic prediction. 
Also the predicted maximum temperature values by the 
hyperbolic model are much larger than those by the parabolic 
model.  After about five thermal relaxation times, the 
difference between diffusion modeling and hyperbolic 
modeling is slight.  In order to prevent the overheating in laser 
tissue welding and soldering, however, an appropriate 
hyperbolic model must be adopted since most reported tissue 
relaxation times are in the order of 10 sec in the literature. 
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Fig.1. Schematic diagram of the simulation model. 
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Fig. 2.  The profiles of divergence of radiative heat flux along the optical axis 
direction with several selected time instants:  (a) along the centerline of 

5.0=η  and (b) along a line of 2.0=η . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. The temporal profiles of initial temperature response at selected 
positions: (a) 5.0=η , and (b) 4.0=η  

Fig. 4. The spatial variances of initial temperature along the optical axis 
direction for two different ordinate locations at several selected time instants. 
 
 
 
 
 
 
 
 
 

 
 
Fig. 5 The contours of initial temperature distribution at selected time instants 
at (a) t = 20 ps, (b) t = 40 ps, (c) t = 100 ps, and (d) t = 200ps. 
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Fig. 6. Comparison between the numerical and exact solutions for an exemplary 
1-D slab problem. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. The time histories of temperature profiles along three selected cross 
lines: (a) 0=χ , (b) 1.0=χ , and (c) 2.0=χ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. The contours of hyperbolic conduction temperature field at several 
selected time instants: (a) 05.0=ξ , (b) 1.0=ξ , (c) 2.0=ξ , 
(d) 3.0=ξ ,(e) 4.0=ξ ,(f) 5.0=ξ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Comparison of temporal profiles of temperature between hyperbolic 
conduction and parabolic conduction models: (a) 5.0=η , and (b) 4.0=η  
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