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ABSTRACT 

Image reconstruction is a bottleneck problem that impedes 
real time application of optical tomography technology. In this 
paper, we propose a novel fluorescence optical tomography 
method with a fast yet accurate algorithm for 3D image 
reconstruction. This imaging method is demonstrated using 
radiation transfer modeling based design. First the transport of 
ultrafast laser radiation governed by radiation transfer equation 
in participating media is simulated. Then the transient 
fluorescence field is obtained by solving the same radiation 
transfer equation in which the quantum yield of fluorescence is 
added to correlate the absorbed laser radiation with 
fluorescence emission intensity. Finally, 3D images are 
reconstructed using the temporal signals of fluorescence at 
detectors around the boundary of targeted tissues. We use the 
early time of fluorescence flight and the maximum fluorescence 
intensity to directly reconstruct the 3D images. Two new 
concepts, i.e., the photon migration statistic property and the 
solid geometric correlation property, are introduced for signal 
and image processing, respectively. The image reconstruction 
in this new method is very fast and does not require any inverse 
optimization. The accurate and efficient image and location of a 
2.4×2.4×2.4mm3 tumor embedded at two different locations 
inside a 20×20×20mm3 rectangular tissue are demonstrated. 
 
 
INTRODUCTION 

In recent years, near-infrared (NIR) biomedical optical 
tomography (OT) is developing speedily. The non-invasive, 
safe, functional, and economical advantages allow OT to be a 
promising technique for supplementing and extending the using 
range of existing imaging modalities such as MRI and X-ray 
based CT. This technique employs NIR radiation measurements 
at the boundary of the highly scattering biological tissue to 
reconstruct the spatial distribution of optical properties of the 
1

target media [1-13]. In image reconstruction, most researchers 
used iterative methods to solve the inverse problem through a 
convergence algorithm of appropriate objective functions based 
on the forward modeling of either diffusion approximation 
equation (DAE) or radiative transfer equation (RTE). 
Hielscher’s group [12,13], for example, used a gradient 
minimization algorithm to implement cross-sectional 
tomographic image using the time-independent RTE as the 
forward model. The majority of researchers in this field used 
the relatively simple DAE as the forward model. Among them, 
Jiang et al. [10,11] employed a finite-element solution of the 
Newton-type reconstruction algorithm to reconstruct the 
absorption and scattering coefficients of the heterogeneous 
turbid media using frequency-domain data. It is found that 
images from different modulation frequencies (from 50MHz to 
300MHz) are almost no difference in visual content, but the 
higher contrast levels between the heterogeneous region and the 
background do exhibit more pronounced artifacts around the 
target boundary. Generally, the simulated or experimentally-
measured signal information detected at the boundary just has 
low contrast information between the abnormal and normal 
tissues, especially when the abnormal tissue size is small. It’s 
very difficult to let the objective function convergent and 
obtain clear images. The inverse problem is instable and 
morbid by nature, and may easily lead to divergence in the 
image reconstruction procedure. Moreover, it may take dozens 
of hours to reconstruct a tomographic image in conventional 
optical tomography methods although the diffusion 
approximation is adopted. Yet the quality and resolution of the 
images may still not be satisfied for clinical use [12]. To 
develop an effective, accurate and fast image reconstruction 
algorithm is of critical importance for achieving clinical 
application of OT technology.  

To enhance and improve image contrast and quality 
appropriate fluorescence dyes may be introduced into the NIR 
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biomedical OT processes. The selective absorption property, 
amplified intensity signal-to-noise, and fluorescence spectrum 
and lifetime give us more information for image reconstruction. 
In fluorescence-based OT imaging, the solution of photon 
migration of both the excitation laser and fluorescence is 
coupled to obtain the fluorescence signals detected at the 
boundaries. In fluorescence image reconstruction, the iterative 
method, such as the conjugate gradient descent method and the 
simultaneous algebraic reconstruction technique [1-11], is still 
utilized to solve the inverse problem. For example, Chang et al. 
[2,3] reconstructed concentration and mean lifetime 
distributions in highly scattering media based on the analytic 
solution of the DAE and Monte Carlo simulation. Paithankar et 
al. [4] studied the feasibility of employing fluorescent contrast 
agents to perform optical imaging in tissue using fluorescence 
lifetime and yield information. Roy and Serick-Muraca [1] 
considered the inverse problem in a noncompressive geometry 
as a simple-bound constrained minimization problem in order 
to recover the interior fluorescence properties of exogenous 
contrast agent from frequency-domain photon migration 
measurements at the boundary. O’Leary et al. [6] formulated an 
inverse problem for fluorescence lifetime tomography. Li et al. 
[7] obtained analytic solutions of the infinite and semi-infinite 
homogeneous media or heterogeneous media containing a 
single spherical object using the DAE in the frequency-domain 
to determine the fluorophore lifetime and concentration 
changes.  A three-dimensional Bayesian image reconstruction 
from sparse and noisy data sets is recently demonstrated by 
Eppstein et al. [8]. Xu et al. [9] used the theory of the 
propagation of spatial Fourier components of the scattered 
wave field based on the DAE and a fast algorithm for three-
dimensional reconstruction in a parallel planar geometry to 
reconstruct the layer maps of the absorption and scattering 
coefficients. Adding fluorescent dye into targeted tissue object 
amplifies the contrast between abnormal and normal tissues. In 
conventional image reconstruction, however, the solution of 
fluorescence radiation transfer must be coupled with the 
solution of the incident laser radiation transfer, and this leads to 
a more complicated iterative process in the inverse problem.  

In this paper, we propose a novel optical imaging method 
using the time-domain parameters of fluorescence signals 
detected at the boundary. The time-resolved fluorescence 
signals are obtained by shining an ultrafast laser pulse to the 
target tissue embedded with a tumor where the fluorescent dye 
is concentrated. We will use the characteristics of ultrafast laser 
and fluorescence transport in tissues to directly reconstruct 3D 
images of the fluorescence emission which characterizes the 
shape, size and location of the tumor. This directly imaging 
process avoids the use of any inverse optimization and 
iteratively forward modeling. Its feasibility in locating and 
imaging small tumors will be demonstrated. 
 
 
MATHEMATICAL MODELS 
 
Governing Equations 

The transport of laser excitation radiation and emitted 
fluorescence light is rigorously governed by the radiation 
transfer theory. The discrete ordinates method developed by 
2

our group [14] to solve the time-dependent radiation transfer 
equation incorporating radiation wave propagation with the 

speed of light is employed to mimic the laser radiation and 
fluorescence transport. Figure1 illustrates a simulation model in 
which a 1 ps laser pulse is incident upon the wall at x = 0 in a 
cubic tissue phantom of 20×20×20mm3 in size. A tumor-like 
object of 2.4×2.4×2.4mm3 in size is embedded inside the 
phantom. The fluorescent dye is deposited uniformly in the 
tumor region. The fluorescent light excited by the incident 
pulse is received by detector arrays on the four side surfaces of 
the cubic tissue phantom. The detected fluorescence signals are 
time-resolved. The normal tissue phantom has an absorption 
coefficient σa=0.001 mm-1 and a scattering coefficient σs=1.0 
mm-1. In the tumor region, the absorption coefficient is larger 
because of the injection of fluorescent dye (σa=0.04 mm-1). The 
transient radiative transfer equations in discrete ordinates form 
can be formulated as 
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where  the subscripts i and F denote, respectively, the 

excitation laser and the consequent fluorescence light, ξl, ηl and 
µl are three direction cosines in a discrete ordinate direction ŝl, 
and σe is the extinction coefficient. The source terms Si

l and SF
l 

can be expressed as 

Figure 1.  A 3D SIMULATION MODEL. 
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Figure 2.  A REPRESENTATIVE FLUORESCENCE SIGNAL. 
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where Φl’l represents the scattering phase function 

Φ(ŝl’→ŝl), Sc
l is the source contribution of the collimated laser 

irradiation, and ηF is the fluorescence quantum yield. The 
concentration variation of fluorescent dye is negligible in an 
ultrashort time period. The radiation transfer equations are 
solved with the discrete ordinates method [14]. A 
computational grid of 25×25×25 is used in simulation. 

 
 

Signal Processing 
When the incident NIR laser pulse irradiates the tumor 

region, fluorescent dye will be excited and emit fluorescence 
light. The fluorescence signals are received using fast 
photodiodes at the boundary of the tissue phantom. Figure 2 
shows a typical fluorescence signal at a detector located at 

location (i,j,k). The maximum fluorescence intensity (MFI) is 
Imax. T’i,j,k is the flight time measured at half MFI and is defined 
as FTMHM. The indices of ‘i’, ‘j’ and ‘k’ indicate the sequence 
numbers of detector in the X, Y and Z directions, respectively. 
Let T’in be the FTMHM from the detector at the laser incident 
position. The flight time of the earliest fluorescence from the 
tumor region to the detector (i, j, k) is then corrected as 
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Most fluorescence photons cannot travel in the tissue 
straightly to the boundary because its propagation is strongly 
interfered by the multiple scattering interactions. This results in 
a time delay in the detected earliest flight time. We hypothesize 
that the flight time of fluorescence photons is governed by a 
Gaussian probability distribution and TF

i,j,k  is the mean value of 
the Gaussian probability distribution function. The probability 
of a specific fluorescence flight time is 
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where σ2 is the variance of the data group of the flight 

times, and TC
i,j,k  is the true flight time from the tumor region to 

the detector (i, j, k): 
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Equation (6) is called as the photon migration statistic 

property. 
 
 

Image Reconstruction Algorithm 
The average distance Ri,j,k between the tumor and a 

detector located at (i, j, k ) can be obtained as 
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where c0 is the speed of light in vacuum, and n is the 

refractive index of the tissue. 
The equation for a spherical surface centered at the 

detector point (Di,Dj,Dk) with a radius of Ri,j,k is given by  
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We define a voxel space line as follows  
 

'' , ji VyVx ==                                                          (10) 
 
 
and solve the intersection points between the spherical 

surface from formula (9) and the space line from formula (10). 
The voxel and pixel grid (Vi’,Vj’,Vk’) for imaging is finer than 
the computational grid in radiation transfer simulation. Figure 3 
illustrates the distribution correlation between the pixel grid 
and computational grid. 

When  
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the intersection points can be located at  
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there is no intersection point. 

If Vk’1 and/or Vk’2 are located in the space of the tissue 
geometric model, the value of MFI received by this detector 
will be distributed to the voxel (Vi’,Vj’,Vk’) and its surrounding 
eight voxels. Repeating the same procedure for each detector, 
we can get the total intensity of each voxel contributed from all 
detector positions: 
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Here, Ι(Vi’,Vj’,Vk’) is the total dimensionless intensity of 

the voxel (Vi’,Vj’,Vk’), ID(Di,Dj,Dk; Vi’,Vj’,Vk’) is the intensity 
contributed from detector (Di,Dj,Dk) to voxel (Vi’,Vj’,Vk’), and 
Imax(Di,Dj,Dk) is the maximum fluorescence intensity at detector 
position (i, j, k). We call the correlations from equation (8) to 
equation (14) as the solid geometric correlation property. 

 
 

RESULTS 
To demonstrate the feasibility of our new method, we 

apply the method to image and locate a small tumor embedded 
in a turbid tissue as shown in Fig. 1. Two cases are studied. In 
case A, the 2.4×2.4×2.4mm3 tumor is located at the cubic 
center of (10, 10, 10) in the tissue phantom. In case B, the 
center of the 2.4×2.4×2.4mm3 tumor is at location (15, 15, 15). 
We will reconstruct directly 3D images. Numerous 
tomographic images can be obtained from the 3D image. For 
the two cases studied, it took only four minutes in the 3D image 
reconstruction process in a Dell PC (Pentium 4, one CPU of 
1.70 GHz, 512 MB DRAM). It is much faster than any reported 
OT methods. This fast and direct 3D image reconstruction is a 
4

Figure 3.  SKETCHES OF THE SIMULATION GRID AND 
THE PIXEL. 

unique feature of the present method. It will make real time 
clinical application possible. 

Figure 4 shows the reconstructed 3D tumor image for case 
A. The blue block presents the tumor region. Initially we got a 
raw distribution of fluorescence intensity inside the tissue. 
Then a cutoff filtering technique is used to filter background 
noises and to enhance the signal/noise ratio and image contrast. 
The contrast-enhanced image in Fig. 4 gives clearly and 
accurately the shape and location of the embedded tumor at the 
center of the cubic tissue. The shape and size of the 
reconstructed tumor closely match to the original tumor shape 

and size. The reconstructed tumor is located very closely to the 
center of the cube.  

Figures 5a, 5b and 5c display the cross-sectional images 
for case A along the X, Y and Z directions, respectively. The 
shape, size and location of the tumor are visualized more 
clearly in each tomographic image than in the 3D image. The 
differentiation of fluorescence intensity possibility between the 
tumor region and surrounding area is very distinct.  Here the 
deformation of the reconstructed images is clearly visible. 
Considering the facts that the tumor images are retrieved from a 
certain depth inside a turbid medium and that the tumor shape 
is very sharp, however, such a deformation is not surprising at 
all. The image quality is excellent and the contrast is very high. 
The tomographic images are very symmetric along the tumor 
central positions (Y = 10 mm or Z = 10mm) in the Y and Z 
directions as shown in Figs. 5b and 5c. However, the image 
location in the X direction slightly shifts to the small X 
direction in Fig. 5a. The central position in the reconstructed 
image is X = 9.1 mm, rather than X = 10mm. Such a 1 mm 
dislocation in the X direction can be attributed to the 
asymmetry of the simulated fluorescence signals detected at the 
walls of X = 0 and X = 20. Since the laser is incident from X = 
0, the flight time detected at the wall of X = 0 is always smaller 
than that detected at the wall of X = 20 when the small tumor is 
Copyright © 2003 by ASME 



embedded at the center (X = 10). Such a dislocation may be 
overcome by shining lasers from several different locations.  

The reconstructed 3D image for case B in which the tumor 
is centered at the location of (15, 15, 15) is shown in Fig. 6. Its 
tomographic images are shown in Figs 7a to 7c. The error of 
the tumor dislocation in this case is less than 0.5mm. The 
reconstructed images in the two exemplary cases have 
demonstrated the high accuracy, high contrast, and high image 
quality of the present imaging method.  

 
 

CONCLUSION 
We have developed and demonstrated a new imaging 

method for fluorescence optical imaging of small abnormal 
region in highly scattering turbid media. A fast and direct 3D 
image reconstruction is introduced in this new method. This 3D 
image reconstruction takes only several minutes and enables 
real time image processing for practical applications. The new 
concept of photon migration statistical property is introduced to 
correct the fluorescence flight time for fluorescence 
propagation in turbid medium. The solid geometric correlations 
are introduced to distribute the fluorescence signal intensities at 
the detectors to a spatial distribution of fluorescence possibility 
in the imaging voxel grid. The high possibility of fluorescence 
emission corresponds to an abnormal region.  

The fluorescence signals are obtained through a radiation 
transfer modeling based design. The time-dependent radiation 
transfer and propagation of both the laser radiation and 
consequent fluorescence are solved with the discrete ordinates 
method. Such a modeling is accurate and can be used for 
practical fluorescence optical imaging design. A small tumor 
embedded at two different positions inside a 3D rectangular 
tissue is efficiently imaged and located using the proposed 
imaging method. The reconstructed tomographic images and 
3D images are accurate with respect to the tumor shape, size 
and location. The reconstructed images are of high contrast and 
high quality. This new method has the potential to be 
developed into a diagnostic tool for early cancer detection and 
image. 

 
 

REFERENCES 
[1]Roy, R. and Sevick-Muraca, E.M., 2001. “Three-

Dimensional Unconstrained and Constrained Image-
reconstruction Techniques Applied to Fluorescence, 
Frequency-domain Photon Migration”. Applied Optics, 
40(13), pp. 2206-2215. 

[2]Das, B. B., Liu, Feng and Alfano, R. R., 1997. “Time-
Resolved Fluorescence and Photon Migration Studies in 
Biomedical and Model Random Media”. Report on Progress 
in Physics, 60, pp. 227-292. 

[3]Chang, J., Graber, H. L., Barbour, R. L.,1997. 
“Luminescence optical tomography of dense scattering 
media”. Journal of Optical Society of American A, 14(1), 
pp. 288-299. 

[4]Chang, J., Graber, H. L., Barbour, R. L., 1997. “Imaging of 
Fluorescence in Highly Scattering Media”. IEEE 
Transaction on Biomedical Engineering, 44(9), pp. 810-822. 
5

[5]Paithankar, D.Y., Chen, A. U., Pogue, B. W., Patterson, M. 
S., and Sevick-Muraca, E. M., 1997. “Imaging of 
Fluorescent Yield and Lifetime from Multiply Scattered 
Light Reemitted from Random Media”. Applied Optics, 
36(10), pp. 2260-2272 

[6]O’Leary, M. A., Boas, D. A., Li, X. D., Chance, B., and 
Yodh, A. G., 1996. “Fluorescence Lifetime Imaging in 
Turbid Media”. Optics Letters, 21(2), pp. 158-160. 

[7]Li, X. D., O’leary, M. A., Boas, D. A., Chance, B., and 
Yodh, A.G., 1996. “Fluorescent Diffuse Photon Density 
Waves in Homogeneous and Heterogeneous Turbid Media: 
Analytic Solutions and Applications”. Applied Optics, 
35(19), pp. 3746-3758. 

[8]Eppstein, M. J., Hawrysz, D. J., Godavarty, A., and Sevick-
Muraca, E. M., 2002. “Three-Dimensional Bayesian Image 
Reconstruction from Sparse and Noisy Data Sets: Near-
infrared Fluorescence Tomography”. PNAS, 99(15), pp. 
9619-9624. 

[9] Xu, M., Lax, M., and Alfano, R. R., 2001. “Time-resolved 
Fourier optical diffuse tomography”. Journal of Optical 
Society of American, 18(7), pp1535-1542. 

[10]Jiang, H., Xu, Y. and Iftimia, N.,2000. “Experimental 
Three-Dimensional Optical Image Reconstruction of 
Heterogeneous Turbid Media from Continuous-Wave 
Data”. Optics Express, 7(5), pp. 204-209. 

[11]Jiang, H., Paulsen, K. D. and Osterberg, U., 1996. 
“Optical Image Reconstruction Using Frequency-domain 
Data: Simulation and Experiments”. Journal of Optical 
Society of American A, 13(2), pp. 253-266. 

[12]Klose, A. D. and Hielscher, A. H., 2002. “Optical 
Tomography using the time-independent equation of 
radiative transfer—Part 2: Inverse Model”. Journal of 
Quantitative Spectroscopy & Radiative Transfer, 72, 
pp715-732. 

[13]Hielscher, A. H., Klose, A. D. and Hanson, K. M., 1999. 
“Gradient-Based Iterative Image Reconstruction Scheme 
for Time-Resolved Optical Tomography”. IEEE 
Transactions on Medical Imaging, 18(3) pp. 262-271. 

[14]Guo, Z. and Kumar, S., 2002. “Three-Dimensional 
Discrete Ordinates Method in Transient Radiation 
Transfer”, Journal of Thermophysics and Heat Transfer, 
16(3), pp. 289-296. 

[15]Bernd Jähne, 1997. Digital Image Processing: Concepts, 
Algorithms, and Scientific Applications, 4th ed., Springer-
Verlag Berlin Heidelberg, New York, Chap. 8-9. 

[16]M. Bertero and P. Boccacci, 1998. Introduction to Inverse 
Problems in Imaging, 1st ed., Institute of Physics 
Publishing, Bristol and Philadelphia 

[17]K. R. Castleman, 1996. Digital Image Processing, 1st ed., 
Prentice-Hall International, Inc., New Jersey 
Copyright © 2003 by ASME 



Figure 5b.  TOMOGRAPHIC IMAGES IN X-Z 
PLANE ALONG THE Y DIRECTION. 

Figure 4.  RECONSTRUCTED 3D TUMOR IMAGE 
FOR CASE A. 

 

 
 

Figure 5c.  TOMOGRAPHIC IMAGES IN X-Y 
PLANE ALONG THE Z DIRECTION. 

Figure 5a.  TOMOGRAPHIC IMAGES IN Y-Z 
PLANE ALONG THE X DIRECTION. 
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Figure 6.  RECONSTRUCTED 3D TUMOR IMAGE 
FOR CASE B. 

Figure 7b.  TOMOGRAPHIC IMAGES IN X-Z 
PLANE ALONG THE Y DIRECTION. 
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Figure 7c.  TOMOGRAPHIC IMAGES IN X-Y 
PLANE ALONG THE Z DIRECTION. 

Figure 7a.  TOMOGRAPHIC IMAGES IN Y-Z 
PLANE ALONG THE X DIRECTION. 
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