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ABSTRACT. The radiation element method by ray emission model (REM?) has been improved by
using the stabilized bi-conjugate gradient (BICGSTAB) method and reduction of the size of equations in
order to reduce computational time. This improved method was applied to analyze radiative heat transfer
in arbitrary three-dimensional participating media and enclosures. The accuracy of the improved method
was evaluated by comparing its predictions with the Monte Carlo and the YIX solutions. And the
method was used to calculate radiative heat transfer in the boiler furnace. Total CPU time to calculate the
radiative heat transfer for a model comprised of 3211 elements was reduced to 1/22 of that by the
previous numerical method using a decomposition method.

NOMENCLATURE

F View factor matrix

i View factor from element i to j
I Unit matrix
N, n,  Total number of elements and number of partition
N, Density of carbon particles
qx Net heat flux for surface element or divergence of heat flux for volume element
Q Heat transfer rate vector

Oc, Qs Heat transfer rate of irradiation energy and diffuse radiosity
Or, Ox Heat transfer rate of emissive power and net heat generation

Q Albedo or reflectivity
Subscripts

i Element i

j Element j

A Spectral value
Superscripts

A Absorption

D Diffuse scattering

R Radiation

S Specular

INTRODUCTION

It is important to analyze radiative heat transfer in high temperature objects, such as boiler furnaces
and heaters for heating semiconductors, because radiative heat transfer is the dominant mode of



energy transfer in these equipments. Recently, many methods have been proposed to predict radiative
heat transfer. For example, Farmer et al. presented the Monte Carlo method [1] and Hsu et al.
presented a YIX method [2] for predicting radiative heat transfer. Tong and Skocypec compared
several numerical methods, such as Monte Carlo method, YIX method, and Generalized Zonal
method and summarized their solutions for three-dimensional anisotropic scattering media [3].
Recent improvements in computer technology enable analysis of radiative heat transfer by using
many calculation meshes and elements. However, such analysis requires a long computational time.
Therefore, it is necessary to develop a fast method of calculating radiative heat transfer.

Many methods have been proposed to reduce CPU time for predicting radiative heat transfer. For
example, Yang et al. developed a radiative heat-ray method using the READ (radiative energy
absorption rate distribution) [4]. Maruyama et al. imgrovcd the zone method and developed the
radiation element method by ray emission model (REM®) and predicted radiative heat transfer in gray
homogeneous media with complex configuration [5]. Furthermore, REM? was developed to take the
nongray and anisotropic scattering media by Guo and Maruyama [6]. This method is much faster than
the Monte Carlo method. However, the zone method and the REM? need a long CPU time to calculate
radiative exchange.

The REM? have to solve linear equations in the analyses of radiative heat transfer. However, it also
took a long CPU time for calculations with a large number of elements. In previous studies, the REM?
have solved the linear equations by a direct method such as decomposition method, and it takes a
CPU time that is proportional to the third power of the number of the elements. On the other hand,
iterative methods such as the stabilized bi-conjugate gradient (BiCGSTAB) method have been known
as efficient algorithms to solve unsymmetrical linear equations [7]. The BiCGSTAB method was
developed to solve unsymmetrical linear systems while avoiding the irregular convergence patterns
of the Conjugate Gradient method. The BICGSTAB method is generally more efficient than the direct
methods, such as the LU decomposition method, in solving large linear equations.

In this paper, the size of linear equations to solve in the REM? was reduced. Then these linear
equations were solved by the BiCGSTAB method, resulting in a much shorter CPU time for
predicting radiative heat transfer.

METHOD OF ANALYSIS

We consider a nongray, anisotropic scattering, absorbing, and emitting medium. To simplify the
problem, the following assumptions are introduced. (1) Each element has constant temperature,
refractive index, and heat generation rate per unit volume. (2) The scattered radiation is distributed
uniformly over the element. Under these assumptions, Maruyama introduced the average diffuse
radiant intensity, I;, and an effective radiation area, 4F. Then Maruyama developed the radiation
element method by ray emission model (REM?) [5]. 12 is similar to the diffuse radiosity that was
used for radiation transfer of arbitrary diffuse and specular surfaces. 4 of element i is defined as
following expression.
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where 4,(§) is an area projected onto the surface normal to §, B, is the extinction coefficient, and

5(#) is an averaged thickness of the radiation element in the direction §, respectively. In the REM?,

the rate of spectral radiation energy emitted and isotropically scattered by the radiation element can
be expressed in a generalized form as

O5n= "41');. (ei,).Eb,i,). + Q:,)AGLA ) (2)



where ¢, =1-Q, -Q/,, E,,, =ad,,,, G,, =7, and Qjy;, is the diffuse radiation transfer rate. The
net rate of heat generation can be derived from the heat balance on the radiation element as follows.

Oxis = A.'l.;ei,A (Eb,i,l. + Gm) 3

If the system is consisted of N volume and surface elements, then Eqgs.(2) and (3) can be rewritten as

Qrin=0Cris+ EF jl;,AQJ,i,A Oxin=0Crjn— 217 jl:',AQJ,i,A (4)
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where Q;,, = 4’¢,,E,,, , and the absorption view factor, F;, , and diffuse scattering view factor, F?,,

are introduced. When F;;; is denoted as matrix F, and Q; » is denoted as vector Q, , diffuse radiative
heat transfer rates for all elements are obtained as follows.

Q;=Qp + F}?Qu ' (5)

In the previous REM?, Q;;, is eliminated from Eq.(4), and the relation between Qr; and Qx;  is
obtained. Then Qg1 for each radiation element is given as a boundary condition, and the unknown
Ox;ia can be attained. However, during the procedure of eliminating Q;; 2 by the LU decomposition
method, a long CPU time was consumed. Therefore, to reduce a CPU time, the size of equations was

reduced and these equations were solved by BiCGSTAB method, which is known as an efficient
method.

When the albedo or diffuse reflectivity of element i, Q7, , is 0, or F}, is 0, Qy; 2 is equal to Qr; » from

the relation in Eq. (5). When the system has 7, elements with nonzero albedo and diffuse reflectivity,
and the remaining n,=N-n; elements are Q7, = 0 (i=n,+1...N), Eq.(5) can be rewritten as follows.
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Namely, Eq.(6) is rewritten as following equations.

Qi = Qpy +F1Q,, +FRQ,,, (7.2)
Quz = an (7'b)
Ql,l in-fl,l
where Q,, and Q,, are the block vectors,Q,, =1 : | and Q,,={ : |, F2 and FZ are the block
in,l. QN,A
F1,11>,A = F :,1,1 F, nl,)+1,1,z = F 16),1,).
matrix, Fj = ¢ . ! |and F2=| “. i |. When the albedo or diffuse reflectivity
Fl,lf);,,l T Fn?,n,,l. Fn?+l,n,,l. . F:,u,,l

of element, Q7, , is 0, the diffuse radiosity, Qj,; 4, is obtained by Eq.(7.b). Then, transposing F2Q,,,

from the right-hand side to the left-hand side in Eq.(7.a) and substituting Eq.(7.b) into Eq.(7.a) yields
the following equation.

[I - Fﬁ th =Qp + Fsznz (8)

Eq.(8) is solved by the BiCGSTAB method, then diffuse radiosity, Qj; , is obtained. Thus, the size of
the linear equations to be solved is reduced to 7, from N. After this procedure, Qj,i.2 is substituted into

the following equations derived by Eq.(4), and spectral net rate of heat generation, Qx; 2, can be
calculated.



Qxx = Qn = F; Qn (9)

The total heat flux of a surface element or the heat flux divergence of a volume element is obtained by

dx; = V_ = F’J; Oy, dA (10)
in which, V;=A; for surface element.

The radiation elements used in the present study are composed of arbitrary triangles, quadrilaterals,
tetrahedrons, wedges, and hexahedrons. The view factors are calculated by using ray tracing method
based on the ray emission model as described by Maruyama and Aihara [5]. The number of rays from
each element is set to 561 in this paper.

To determine the spectral absorption coefficients of CO, and H,0, the Elsasser narrow band model is
used in conjunction with the correlation parameters in Edwards wide band model as described by Guo
and Maruyama [6]. The number of spectral partition is set to 100 for nongray calculations. Particles
are assumed to be carbon spheres with a diameter of 30 um in the present study. Employed phase
function and the values of scattering and extinction efficiencies are listed by Tong and Skocypec [3].
To evaluate anisotropic scattering, the anisotropic scattering phase function reduced to zeroth-order
delta function approximation [8] was used.

RESULTS AND DISCUSSIONS

Inhomogeneous gray medium in the cubic enclosure Radiative heat transfer in a unit cube with
inhomogeneous gray medium is investigated and compared with the results of the other solutions [9].
Isotropic scattering is assumed in this subsection. The geometry is shown in Fig.1, in which L=H=W=1.
All the walls are black and cold. Blackbody emissive power is given as unity in the medium.
Distribution of the optical thickness; T =B, (extinction coefficient) x W (the side length), is given as

follows.
T= 0.9(1 - ﬂ)(1 - M)(l - ﬂ) +0.1 (1)
0.5 0.5 0.5

The scattering albedo is set to 0.9.

The cubic medium was divided into nyxn,xn,. The partition number 7, is varied from 3 to 19. In the
case of ny=9 and n,=19, the distributions of surface heat flux along the line of x=-0.5, y=0 and
divergence of heat flux along the line of y=z=0 are shown in Fig.2 (a) and (b), respectively. It is seen
that the influence of volume element mesh on the heat flux is small. The solutions of Monte Carlo [9]
and YIX method [9] are also shown in Fig.2 (a) and (b). The present solutions agree with Monte
Carlo solutions and YIX solutions.
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Figure 1. Geometry of a three-dimensional rectangular medium
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Figure 2. Comparison of solutions in inhomogeneous gray medium
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Figure 3. Comparison of solutions in nongray medium

Homogeneous nongray medium in the rectangular enclosure The accuracy of the present method
is then verified for three-dimensional nongray and anisotropic scattering medium. The geometry is
also shown in Fig.1, and L=2[m], H=3[m], and W=5[m]. The medium is a mixture of CO, and N,
gases and carbon particles. The pressure of the total mixture is specified at 1atm, and a volume
fraction of CO; is 0.21. The temperature of the medium is assumed at 1000K and the enclosure is
black and cold surfaces. In this subsection, a one-eighths symmetric analysis model is used by
considering three pure specular surfaces, Q°=1. The rectangular medium was divided into npXnpXny,.
The analysis model includes n,xnyxn, volume elements, 3xn,xn, black surface elements and 3xnyxn,
perfect mirror elements.

The distributions of surface heat flux along the line of y=0[m], z=1.5[m] and divergence of heat flux
along the line of x=z=0[m] for three levels of carbon particle density are shown in Fig.3 (a) and (b),
respectively. The solutions of Monte Carlo [1] and YIX method [2] are also shown in Fig.3.

The heat fluxes at the boundary agree with that by Monte Carlo and YIX method for all three levels of
carbon density, approximately. However, the difference of heat flux between the present method and
Monte Carlo method becomes larger at the vicinity of boundaries. In the case of np=13, it is shown
that the heat flux by the present method is lower than the other solutions near the center of the
medium (0.0sx<0.2[m]) with intermediate optical thickness (Nc=2.0x10%[particles/m’]). This may be
an influence of symmetric surfaces (x=0[m]). For a carbon particle density of 2.0x10° particles/m’,
the heat flux results obtained by the YIX method are slightly higher than those by the other methods.

The differences of flux divergence by the present method basically agree with the two solutions
except the vicinity of the boundaries in Fig.3 (b). The difference of the radiative transfer predictions



between any two solutions of the present method, Monte Carlo method and YIX method is much
larger in nongray medium than in gray medium. This may be attributed to the different spectral
integration techniques used in the three different methods as noticed by Hsu and Farmer [9].

Comparison of a CPU time for cubic and rectangular mediums The relationship between CPU time
and the number of surface elements for the cubic gray medium and rectangular nongray medium are
shown in Fig.4 (a) and (b), respectively. The CPU time for calculating radiative exchange except the ray
tracing and the total CPU time by the present method were compared with those by the previous
radiation element method using the LU decomposition method. A personal computer VT-Alpha 600 was
used as the calculating machine. However, when the volume divided number n, is greater than or equal
to 13, CPU time calculated by Origin2000 was shown as reference in Fig.4 (a).

In the case of the gray medium, CPU time for calculating radiative exchange by the previous method
using the decomposition method is proportional to the 2.9th - 3.8th power of the number of the
elements, as shown in Fig.4 (a). The CPU time increases if more elements are used. On the other hand,
the CPU time for calculating radiative exchange by the present method is proportional to the 1.9th -
2.8th power of the number of the elements. In the case of 3211 elements, the CPU time for calculating
radiative exchange by the present method was reduced to 1/84 and total CPU time was reduced to
1/22 compared with that by the previous method. Due to the remarkable reduction of the CPU time
using the present method, determination of view factors consumes a large portion of calculation time.
In the present case using the BiCGSTAB method, 25% of the CPU time was spent for solving
radiative exchange, whereas most of the time was consumed for solving radiative exchange in the
previous method using a direct method.

In the case of the nongray medium, Fig.4 (b) shows that CPU time for calculating radiative exchange
by present method was reduced, too. Reduction of the total CPU time for nongray medium was
smaller than that for gray medium because calculation of absorption, scattering, and extinction
coefficient of gas and particles consumes a longer CPU time. However, the reduction in the CPU time
becomes remarkable when the number of radiation elements increases.

Radiative heat transfer in a boiler model As a practical example, radiative heat transfer in a boiler
model as shown in Fig.5 is investigated. Combustion gas is composed of CO,, H,0, and N, and the total
pressure is latm. Mole fractions of CO, and H,O are assumed to be 0.119 and 0.085, respectively.
Temperature of the boiler wall is 623K and that of the gas exit is 813K. All walls are diffuse with
emissivity of 0.8. Temperature profile inside the boiler is assumed as follows as in the study of Guo et al.

[6].
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Figure 4. Comparison of CPU time
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in which, a1=1, b1= 2.5, a»=2.8, b,=1, and the input fuel temperature 7p=563K. Carbon particles in the
present model are assumed to be produced uniformly in a region where 1000K = T < 2000K and H1/9
<z = 6H,/9. Three levels of carbon density (Nc=2.0x107, 2.0x108, 2.0x10° [particles/m"]) are studied.
In actual calculation, a half analysis model is employed since the boiler is symmetric along the center
plane of y=L/2. The analysis model of boiler is comprised of 1071 elements.

The distributions of normalized heat flux (q, /o7, , T,=2000K) at the wall are illustrated in Fig.6 for

three levels of the carbon density. It is seen that larger heat fluxes are distributed at the wall near the
flame region, and that the heat flux at the wall near the flame is strongly influenced by the particle
density. The larger particle density is, the higher the heat flux becomes.

Regarding the boiler model, CPU time for calculating radiative exchange was also reduced by the
present method. The CPU time for calculating radiative exchange in the case of Ne=2.0x10° was 216
seconds, and it was 30 times shorter than that by the previous method for three levels of the carbon
density. The total CPU time by the present method was 2639 seconds, and it was 3.4 times shorter
than that by the previous method. When we solve a problem with a large number of radiation
elements, this reduction rate in total CPU time can be improved. Further more improvement can be
expected by improving the ray tracing method in homogeneous nongray participating media.
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Figure 5. Geometry of a three-dimensional boiler furnace
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Figure 6. Distributions of normalized radiative heat flux at the wall



CONCLUSIONS

To reduce the time for calculating radiative heat transfer comprised of a large number of radiation
elements, the radiation element method by ray emission model (REMZ) was improved by reduction of
the size of equations to solve and using the stabilized bi-conjugate gradient (BiCGSTAB) method for
solving equations.

Total CPU time was reduced to 1/22 for a model comprised of 3211 volume and surface elements,
compared with the previous method using a decomposition method to solve linear equations. The
calculation time using the present iterative method (BICGSTAB) is proportional to the 1.9th - 2.8th
power of the number of radiation elements, whereas it is proportional to the 2.9th - 3.8th power of the
number of elements in the case of the previous method (LU decomposition). More reduction in the
CPU time can be expected for a large-scale calculation. If an analysis model contains many elements
without scattering coefficient or diffuse reflectivity, such as pure gas volume elements and black and
pure specular surfaces, the present method can much reduce a calculation time, because the size of the
matrix to solve is reduced.
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